Modulation of binding energy and polarizability in GaAs four-quantum-dot systems under electric fields

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
R. Arraoui , M. Jaouane , A. Fakkahi , A. Ed-Dahmouny , K. El-Bakkari , H. Azmi , A. Sali , H.El Ghazi
{"title":"Modulation of binding energy and polarizability in GaAs four-quantum-dot systems under electric fields","authors":"R. Arraoui ,&nbsp;M. Jaouane ,&nbsp;A. Fakkahi ,&nbsp;A. Ed-Dahmouny ,&nbsp;K. El-Bakkari ,&nbsp;H. Azmi ,&nbsp;A. Sali ,&nbsp;H.El Ghazi","doi":"10.1016/j.mseb.2025.118588","DOIUrl":null,"url":null,"abstract":"<div><div>The research explores the impact of an external electric field (E-field), the position of a shallow donor impurity, and key structural variables (including dot width and barrier width) on the binding energy (B.E.) and polarizability of a nanosystem. The system consists of an electron and a shallow donor impurity contained within four <span><math><mrow><mi>G</mi><mi>a</mi><mi>A</mi><mi>s</mi></mrow></math></span> quantum dots (4 GaAs QDs), which are infused in an <span><math><mrow><msub><mrow><mi>A</mi><mi>l</mi></mrow><mi>x</mi></msub><msub><mrow><mi>G</mi><mi>a</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span> medium. To model these effects, the effective mass framework and finite element framework (FEF) are employed. The findings demonstrate that the electric field perturbs the symmetry of the binding energy, resulting in position-dependent variations that reflect the interplay between quantum confinement and field-induced electron delocalisation. In addition, variations in dot and barrier widths, combined with the impurity position, induce complex modifications in the binding energy. Strong confinement results in a nearly constant polarisability, whereas weak confinement produces a non-monotonic response. Furthermore, changes in barrier width and impurity position significantly affect the polarizability, highlighting the interaction between quantum confinement and field-induced charge redistribution.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"322 ","pages":"Article 118588"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725006129","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The research explores the impact of an external electric field (E-field), the position of a shallow donor impurity, and key structural variables (including dot width and barrier width) on the binding energy (B.E.) and polarizability of a nanosystem. The system consists of an electron and a shallow donor impurity contained within four GaAs quantum dots (4 GaAs QDs), which are infused in an AlxGa1-xAs medium. To model these effects, the effective mass framework and finite element framework (FEF) are employed. The findings demonstrate that the electric field perturbs the symmetry of the binding energy, resulting in position-dependent variations that reflect the interplay between quantum confinement and field-induced electron delocalisation. In addition, variations in dot and barrier widths, combined with the impurity position, induce complex modifications in the binding energy. Strong confinement results in a nearly constant polarisability, whereas weak confinement produces a non-monotonic response. Furthermore, changes in barrier width and impurity position significantly affect the polarizability, highlighting the interaction between quantum confinement and field-induced charge redistribution.
电场作用下砷化镓四量子点系统结合能和极化率的调制
本研究探讨了外电场(E-field)、浅层给体杂质的位置和关键结构变量(包括点宽度和势垒宽度)对纳米系统结合能(B.E.)和极化率的影响。该系统由包含在四个GaAs量子点(4gaas QDs)中的一个电子和一个浅层给体杂质组成,这些GaAs量子点注入到AlxGa1-xAs介质中。为了模拟这些影响,采用了有效质量框架和有限元框架。研究结果表明,电场扰乱了结合能的对称性,导致位置相关的变化,反映了量子约束和场诱导电子离域之间的相互作用。此外,点和势垒宽度的变化,加上杂质的位置,引起结合能的复杂修饰。强约束产生几乎恒定的极化率,而弱约束产生非单调响应。此外,势垒宽度和杂质位置的变化显著影响极化率,突出了量子约束和场诱导电荷再分配之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信