Tailoring electrocatalytic activity of Ti/IrO2-Ta2O5 anodes via graphene incorporation for energy-efficient copper foil fabrication

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Duoli Wu , Liao Xiang , Qingyang Zhang , Huaidong Zhang , Dayu Li , Chao Zhang
{"title":"Tailoring electrocatalytic activity of Ti/IrO2-Ta2O5 anodes via graphene incorporation for energy-efficient copper foil fabrication","authors":"Duoli Wu ,&nbsp;Liao Xiang ,&nbsp;Qingyang Zhang ,&nbsp;Huaidong Zhang ,&nbsp;Dayu Li ,&nbsp;Chao Zhang","doi":"10.1016/j.mseb.2025.118586","DOIUrl":null,"url":null,"abstract":"<div><div>The development of energy-efficient electrocatalytic anodes is crucial for advancing electrolytic copper foil production, a key material in electronics and lithium-ion batteries. This study investigates the incorporation of graphene into Ti/IrO<sub>2</sub>-Ta<sub>2</sub>O<sub>5</sub> coated anodes to reduce reliance on costly iridium while enhancing electrochemical performance. Using thermal decomposition, four anodes with fixed iridium content (26 g/m<sup>2</sup>) and varying graphene concentrations (0.2–0.8 mg/mL) were synthesized. Structural and morphological analyses via XRD, SEM, and EDS revealed uniform IrO<sub>2</sub> crystallization and graphene-induced agglomerates, while electrochemical tests (polarization curves, cyclic voltammetry, and impedance spectroscopy) demonstrated optimized performance at 0.6 mg/mL graphene. This composition achieved the lowest charge transfer resistance (2.92 Ω·cm<sup>2</sup>), highest voltammetric charge (187 mC/cm<sup>2</sup>), and superior oxygen evolution activity, attributed to balanced conductivity and active site distribution. Excessive graphene (&gt;0.6 mg/mL) led to aggregation and performance decline. The work provides a cost-effective strategy for designing durable, high-performance anodes for industrial copper foil fabrication.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"322 ","pages":"Article 118586"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725006105","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of energy-efficient electrocatalytic anodes is crucial for advancing electrolytic copper foil production, a key material in electronics and lithium-ion batteries. This study investigates the incorporation of graphene into Ti/IrO2-Ta2O5 coated anodes to reduce reliance on costly iridium while enhancing electrochemical performance. Using thermal decomposition, four anodes with fixed iridium content (26 g/m2) and varying graphene concentrations (0.2–0.8 mg/mL) were synthesized. Structural and morphological analyses via XRD, SEM, and EDS revealed uniform IrO2 crystallization and graphene-induced agglomerates, while electrochemical tests (polarization curves, cyclic voltammetry, and impedance spectroscopy) demonstrated optimized performance at 0.6 mg/mL graphene. This composition achieved the lowest charge transfer resistance (2.92 Ω·cm2), highest voltammetric charge (187 mC/cm2), and superior oxygen evolution activity, attributed to balanced conductivity and active site distribution. Excessive graphene (>0.6 mg/mL) led to aggregation and performance decline. The work provides a cost-effective strategy for designing durable, high-performance anodes for industrial copper foil fabrication.
通过石墨烯掺入调整Ti/IrO2-Ta2O5阳极的电催化活性,用于节能铜箔制造
开发节能的电催化阳极对于推进电解铜箔生产至关重要,而电解铜箔是电子产品和锂离子电池的关键材料。本研究研究了将石墨烯掺入Ti/IrO2-Ta2O5涂层阳极中,以减少对昂贵的铱的依赖,同时提高电化学性能。采用热分解的方法,合成了4个固定铱含量(26 g/m2)和不同石墨烯浓度(0.2 ~ 0.8 mg/mL)的阳极。通过XRD、SEM和EDS对IrO2进行结构和形态分析,发现IrO2结晶均匀,石墨烯诱导形成团块;电化学测试(极化曲线、循环伏安法和阻抗谱)表明,在0.6 mg/mL石墨烯条件下,IrO2的性能最佳。该组合物具有最低的电荷转移电阻(2.92 Ω·cm2),最高的伏安电荷(187 mC/cm2),以及优异的析氧活性,这归功于平衡的电导率和活性位点分布。过量的石墨烯(0.6 mg/mL)导致聚合和性能下降。这项工作为设计耐用、高性能的工业铜箔阳极提供了一种经济有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信