An epiperimetric inequality for odd frequencies in the thin obstacle problem

IF 1.7 2区 数学 Q1 MATHEMATICS
Matteo Carducci , Bozhidar Velichkov
{"title":"An epiperimetric inequality for odd frequencies in the thin obstacle problem","authors":"Matteo Carducci ,&nbsp;Bozhidar Velichkov","doi":"10.1016/j.jfa.2025.111115","DOIUrl":null,"url":null,"abstract":"<div><div>We prove for the first time an epiperimetric inequality for the thin obstacle Weiss' energy with odd frequencies and we apply it to solutions to the thin obstacle problem with general <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>γ</mi></mrow></msup></math></span> obstacle. In particular, we obtain the rate of convergence of the blow-up sequences at points of odd frequencies and the regularity of the strata of the corresponding contact set. We also recover the frequency gap for odd frequencies obtained by Savin and Yu.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111115"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002976","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove for the first time an epiperimetric inequality for the thin obstacle Weiss' energy with odd frequencies and we apply it to solutions to the thin obstacle problem with general Ck,γ obstacle. In particular, we obtain the rate of convergence of the blow-up sequences at points of odd frequencies and the regularity of the strata of the corresponding contact set. We also recover the frequency gap for odd frequencies obtained by Savin and Yu.
薄型障碍问题中奇数频率的经验不等式
首次证明了奇频薄障碍物Weiss能量的一个经验不等式,并将其应用于具有一般Ck,γ障碍的薄障碍物问题的解。特别地,我们得到了爆破序列在奇频点处的收敛速率和相应接触集的地层的正则性。我们还恢复了Savin和Yu得到的奇数频率的频率间隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信