Oleg Sergiyenko , José A. Núñez-López , Vera Tyrsa , Rubén Alaniz-Plata , Oscar M. Pérez-Landeros , César Selpúlveda-Valdez , Wendy Flores-Fuentes , Julio C. Rodríguez-Quiñonez , Fabian N. Murrieta-Rico , Vladimir Kartashov , Marina Kolendovska
{"title":"3D coordinate sensing with nonsmooth friction dynamical discontinuities compensation in laser scanning system","authors":"Oleg Sergiyenko , José A. Núñez-López , Vera Tyrsa , Rubén Alaniz-Plata , Oscar M. Pérez-Landeros , César Selpúlveda-Valdez , Wendy Flores-Fuentes , Julio C. Rodríguez-Quiñonez , Fabian N. Murrieta-Rico , Vladimir Kartashov , Marina Kolendovska","doi":"10.1016/j.mechatronics.2025.103382","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to address the issue of laser ray spatial positioning to mitigate discontinuities in the dynamics caused by nonsmooth friction effects by the direct application of control theory with improved friction compensation. Analyzing physical phenomena on micro-relieved surfaces through SEM methods, the obtained data about surface characteristics helps synthesize a corresponding control law for the laser positioner and conduct its stability analysis. This work considers a patented laser scanning system incorporating a laser positioning mechanism with inherent friction. SEM micrograph analysis of the friction zone was conducted to compare microscopic imperfections of steel surfaces, which helped infer the dynamics of an internal variable ‘z’ in the friction model and determine a reference value for control synthesis. A nonlinear control algorithm was proposed to compensate for friction to enhance positioning accuracy. The global asymptotic stability of the system was proven using Lyapunov’s direct method and Barbalat’s lemma. Experimental implementation on an STM32 board demonstrated a significant reduction in the uncertainty associated with sensing 3D coordinates using the friction-compensated laser scanning system.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103382"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000911","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to address the issue of laser ray spatial positioning to mitigate discontinuities in the dynamics caused by nonsmooth friction effects by the direct application of control theory with improved friction compensation. Analyzing physical phenomena on micro-relieved surfaces through SEM methods, the obtained data about surface characteristics helps synthesize a corresponding control law for the laser positioner and conduct its stability analysis. This work considers a patented laser scanning system incorporating a laser positioning mechanism with inherent friction. SEM micrograph analysis of the friction zone was conducted to compare microscopic imperfections of steel surfaces, which helped infer the dynamics of an internal variable ‘z’ in the friction model and determine a reference value for control synthesis. A nonlinear control algorithm was proposed to compensate for friction to enhance positioning accuracy. The global asymptotic stability of the system was proven using Lyapunov’s direct method and Barbalat’s lemma. Experimental implementation on an STM32 board demonstrated a significant reduction in the uncertainty associated with sensing 3D coordinates using the friction-compensated laser scanning system.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.