Shengnan Duan , Teng Gu , Lei Liu , Shin-ichi Sasaki , Chaisa Uragami , Peihao Huang , Xue Jiang , Yuanqi Zhou , Ziyan Liu , Dingqin Hu , Heng Liu , Xinhui Lu , Hitoshi Tamiaki , Xiao-Feng Wang , Hideki Hashimoto , Zeyun Xiao
{"title":"Chlorophylls for dual-function exciton relay and morphology regulation in organic solar cells","authors":"Shengnan Duan , Teng Gu , Lei Liu , Shin-ichi Sasaki , Chaisa Uragami , Peihao Huang , Xue Jiang , Yuanqi Zhou , Ziyan Liu , Dingqin Hu , Heng Liu , Xinhui Lu , Hitoshi Tamiaki , Xiao-Feng Wang , Hideki Hashimoto , Zeyun Xiao","doi":"10.1016/j.mser.2025.101062","DOIUrl":null,"url":null,"abstract":"<div><div>Chlorophylls (Chls), the most abundant and cost-effective natural pigments, exhibit outstanding optoelectronic properties and biocompatibility, making them highly attractive for artificial photosynthesis. In this study, we propose high-efficiency, eco-friendly organic solar cells (OSCs) by incorporating semi-synthetic Chl derivatives (Chl-1 and Chl-2) as analogous functions of charge transfer intermediator. These Chl derivatives not only modulate the molecular stacking and crystallinity of the active layer, promoting a favorable face-on molecular orientation and a denser crystalline structure, but also enhance exciton generation and diffusion as they function in nature and facilitate charge transfer between PM6 and BTP-eC9. Consequently, these synergistic effects significantly improve the exciton generation, dissociation, and charge transportation processes for the Chl derivatives-based devices. As a result, devices incorporating Chl-2 achieve an outstanding power conversion efficiency (PCE) of 19.54 %, surpassing Chl-1 (18.86 %) and outperforming the control binary devices (18.05 %). This study presents an innovative strategy to enhance OSC performance by utilizing eco-friendly Chl derivatives, addressing challenges related to low-toxicity sustainability and high efficiency.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101062"},"PeriodicalIF":31.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001391","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorophylls (Chls), the most abundant and cost-effective natural pigments, exhibit outstanding optoelectronic properties and biocompatibility, making them highly attractive for artificial photosynthesis. In this study, we propose high-efficiency, eco-friendly organic solar cells (OSCs) by incorporating semi-synthetic Chl derivatives (Chl-1 and Chl-2) as analogous functions of charge transfer intermediator. These Chl derivatives not only modulate the molecular stacking and crystallinity of the active layer, promoting a favorable face-on molecular orientation and a denser crystalline structure, but also enhance exciton generation and diffusion as they function in nature and facilitate charge transfer between PM6 and BTP-eC9. Consequently, these synergistic effects significantly improve the exciton generation, dissociation, and charge transportation processes for the Chl derivatives-based devices. As a result, devices incorporating Chl-2 achieve an outstanding power conversion efficiency (PCE) of 19.54 %, surpassing Chl-1 (18.86 %) and outperforming the control binary devices (18.05 %). This study presents an innovative strategy to enhance OSC performance by utilizing eco-friendly Chl derivatives, addressing challenges related to low-toxicity sustainability and high efficiency.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.