Genotype Prediction from Retinal Fundus Images Using Deep Learning in Eyes with Age-Related Macular Degeneration

IF 3.2 Q1 OPHTHALMOLOGY
Avishai Halev PhD , Denis Huang MD , Shahbaz Rezaei PhD , Sean Banks BS , John D. McPherson PhD , Suma P. Shankar MD, PhD , Xin Liu PhD , Glenn Yiu MD, PhD
{"title":"Genotype Prediction from Retinal Fundus Images Using Deep Learning in Eyes with Age-Related Macular Degeneration","authors":"Avishai Halev PhD ,&nbsp;Denis Huang MD ,&nbsp;Shahbaz Rezaei PhD ,&nbsp;Sean Banks BS ,&nbsp;John D. McPherson PhD ,&nbsp;Suma P. Shankar MD, PhD ,&nbsp;Xin Liu PhD ,&nbsp;Glenn Yiu MD, PhD","doi":"10.1016/j.xops.2025.100836","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To employ deep learning models to predict high-risk genetic variants associated with age-related macular degeneration (AMD) from retinal fundus photographs of patients with this condition.</div></div><div><h3>Design</h3><div>Deep learning algorithm development to classify single-nucleotide polymorphism in the complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2) genes using retinal fundus images.</div></div><div><h3>Participants</h3><div>Thirty-one thousand two hundred seventy-one retinal color fundus photographs of 1754 participants from the Age-Related Eye Disease Study.</div></div><div><h3>Methods</h3><div>We trained deep learning models including convolution neural networks and vision transformers (ViTs) to classify patients into high-risk (homozygous high-risk alleles) or low-risk (heterozygous or homozygous low-risk alleles) genotypes for CFH or ARMS2, then evaluated algorithm performance on an independent test set. The complexity of genotype predictions was compared with AMD severity or gender classification tasks using V-usable information. Attribution mapping was performed to identify fundus regions used to predict genotype from phenotype.</div></div><div><h3>Main Outcome Measures</h3><div>Area under the receiver operating characteristic curve (AUROC), balanced accuracy, and average precision for predicting high-risk genotypes.</div></div><div><h3>Results</h3><div>Our trained ViT models predicted high-risk genotypes in CFH and ARMS2 with an AUROC of 0.719 and 0.741 across all eyes, respectively. For genotype predictions for ARMS2, model performance is improved in eyes with advanced AMD (AUROC 0.867), choroidal neovascularization (AUROC 0.833), and geographic atrophy (AUROC 0.957). Genotype predictions from fundus images appear more difficult than AMD severity or gender classification tasks, although saliency mapping supports biological plausibility by demonstrating attention to the central macula for genotype predictions.</div></div><div><h3>Conclusions</h3><div>Deep learning can predict high-risk genotypes in CFH and ARMS2 from retinal fundus images of patients with AMD. Our findings provide proof of principle for inferring genotype from noninvasive eye imaging and reveal insights into genotype-phenotype relationships in AMD.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 6","pages":"Article 100836"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914525001344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To employ deep learning models to predict high-risk genetic variants associated with age-related macular degeneration (AMD) from retinal fundus photographs of patients with this condition.

Design

Deep learning algorithm development to classify single-nucleotide polymorphism in the complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2) genes using retinal fundus images.

Participants

Thirty-one thousand two hundred seventy-one retinal color fundus photographs of 1754 participants from the Age-Related Eye Disease Study.

Methods

We trained deep learning models including convolution neural networks and vision transformers (ViTs) to classify patients into high-risk (homozygous high-risk alleles) or low-risk (heterozygous or homozygous low-risk alleles) genotypes for CFH or ARMS2, then evaluated algorithm performance on an independent test set. The complexity of genotype predictions was compared with AMD severity or gender classification tasks using V-usable information. Attribution mapping was performed to identify fundus regions used to predict genotype from phenotype.

Main Outcome Measures

Area under the receiver operating characteristic curve (AUROC), balanced accuracy, and average precision for predicting high-risk genotypes.

Results

Our trained ViT models predicted high-risk genotypes in CFH and ARMS2 with an AUROC of 0.719 and 0.741 across all eyes, respectively. For genotype predictions for ARMS2, model performance is improved in eyes with advanced AMD (AUROC 0.867), choroidal neovascularization (AUROC 0.833), and geographic atrophy (AUROC 0.957). Genotype predictions from fundus images appear more difficult than AMD severity or gender classification tasks, although saliency mapping supports biological plausibility by demonstrating attention to the central macula for genotype predictions.

Conclusions

Deep learning can predict high-risk genotypes in CFH and ARMS2 from retinal fundus images of patients with AMD. Our findings provide proof of principle for inferring genotype from noninvasive eye imaging and reveal insights into genotype-phenotype relationships in AMD.

Financial Disclosure(s)

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
基于深度学习的老年性黄斑变性视网膜眼底图像基因型预测
目的利用深度学习模型预测与年龄相关性黄斑变性(AMD)相关的高风险遗传变异。基于视网膜眼底图像的补体因子H (CFH)和年龄相关性黄斑病变易感性2 (ARMS2)基因单核苷酸多态性分类的深度学习算法开发。参与者来自年龄相关性眼病研究的1754名参与者的31271张视网膜眼底彩色照片。方法利用卷积神经网络和视觉变换(ViTs)等深度学习模型,对CFH或ARMS2患者进行高风险(纯合子高风险等位基因)和低风险(杂合子或纯合子低风险等位基因)基因型的分类,并在独立测试集上评估算法的性能。使用v可用信息将基因型预测的复杂性与AMD严重程度或性别分类任务进行比较。进行归因定位以确定用于从表型预测基因型的眼底区域。主要结局指标:受试者工作特征曲线下面积(AUROC)、平衡准确度和预测高危基因型的平均精度。结果我们训练的ViT模型预测CFH和ARMS2的高危基因型,全眼AUROC分别为0.719和0.741。对于ARMS2的基因型预测,晚期AMD (AUROC 0.867)、脉络膜新生血管(AUROC 0.833)和地理萎缩(AUROC 0.957)的模型性能有所提高。从眼底图像预测基因型似乎比AMD严重程度或性别分类任务更困难,尽管显著性定位通过证明对中心黄斑的关注来支持基因型预测的生物学合理性。结论深度学习可以预测AMD患者视网膜眼底图像中CFH和ARMS2的高危基因型。我们的研究结果为从无创眼成像推断基因型提供了原理证明,并揭示了AMD中基因型-表型关系的见解。财务披露专有或商业披露可在本文末尾的脚注和披露中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信