Thresholds for constrained Ramsey and anti-Ramsey problems

IF 0.9 3区 数学 Q1 MATHEMATICS
Natalie Behague , Robert Hancock , Joseph Hyde , Shoham Letzter , Natasha Morrison
{"title":"Thresholds for constrained Ramsey and anti-Ramsey problems","authors":"Natalie Behague ,&nbsp;Robert Hancock ,&nbsp;Joseph Hyde ,&nbsp;Shoham Letzter ,&nbsp;Natasha Morrison","doi":"10.1016/j.ejc.2025.104159","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> be graphs. A graph <span><math><mi>G</mi></math></span> has the <em>constrained Ramsey property for</em> <span><math><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></math></span> if every edge-colouring of <span><math><mi>G</mi></math></span> contains either a monochromatic copy of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or a rainbow copy of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Our main result gives a 0-statement for the constrained Ramsey property in <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> whenever <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi></mrow></msub></mrow></math></span> for some <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is not a forest. Along with previous work of Kohayakawa, Konstadinidis and Mota, this resolves the constrained Ramsey property for all non-trivial cases with the exception of <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub></mrow></math></span>, which is equivalent to the anti-Ramsey property for <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div><div>For a fixed graph <span><math><mi>H</mi></math></span>, we say that <span><math><mi>G</mi></math></span> has the <em>anti-Ramsey property for</em> <span><math><mi>H</mi></math></span> if any proper edge-colouring of <span><math><mi>G</mi></math></span> contains a rainbow copy of <span><math><mi>H</mi></math></span>. We show that the 0-statement for the anti-Ramsey problem in <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> can be reduced to a (necessary) colouring statement, and use this to find the threshold for the anti-Ramsey property for some particular families of graphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"129 ","pages":"Article 104159"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000411","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let H1 and H2 be graphs. A graph G has the constrained Ramsey property for (H1,H2) if every edge-colouring of G contains either a monochromatic copy of H1 or a rainbow copy of H2. Our main result gives a 0-statement for the constrained Ramsey property in G(n,p) whenever H1=K1,k for some k3 and H2 is not a forest. Along with previous work of Kohayakawa, Konstadinidis and Mota, this resolves the constrained Ramsey property for all non-trivial cases with the exception of H1=K1,2, which is equivalent to the anti-Ramsey property for H2.
For a fixed graph H, we say that G has the anti-Ramsey property for H if any proper edge-colouring of G contains a rainbow copy of H. We show that the 0-statement for the anti-Ramsey problem in G(n,p) can be reduced to a (necessary) colouring statement, and use this to find the threshold for the anti-Ramsey property for some particular families of graphs.
约束Ramsey和反Ramsey问题的阈值
设H1和H2是图。如果图G的每个边着色都包含H1的单色副本或H2的彩虹副本,则图G具有(H1,H2)的约束Ramsey性质。我们的主要结果给出了G(n,p)中约束Ramsey性质的0陈述,当H1=K1,k对于某些k≥3且H2不是森林时。与Kohayakawa, Konstadinidis和Mota之前的工作一起,这解决了除H1=K1,2之外的所有非平凡情况下的约束Ramsey性质,它相当于H2的反Ramsey性质。对于固定图H,如果G的任何正当边着色包含H的彩虹副本,我们说G具有H的反拉姆齐性质。我们证明了G(n,p)中反拉姆齐问题的0陈述可以简化为一个(必要)着色陈述,并利用它来寻找某些特定图族的反拉姆齐性质的阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信