Research on horizontal topology optimization fins in latent heat storage unit

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Wanxing Pu , Shengjie Wang , Jiapeng Liu , Yahui Wang , Ruijun Cui , Junhu Hu , Zhiguo Shi , Xiaoyan Zhao , Xiang Yu
{"title":"Research on horizontal topology optimization fins in latent heat storage unit","authors":"Wanxing Pu ,&nbsp;Shengjie Wang ,&nbsp;Jiapeng Liu ,&nbsp;Yahui Wang ,&nbsp;Ruijun Cui ,&nbsp;Junhu Hu ,&nbsp;Zhiguo Shi ,&nbsp;Xiaoyan Zhao ,&nbsp;Xiang Yu","doi":"10.1016/j.solener.2025.113771","DOIUrl":null,"url":null,"abstract":"<div><div>Adding fin structures enhances the heat transfer performance of latent thermal energy storage (LHTES) units. Current research on fin optimization focuses mainly on single or multiple fin parameters, but fin optimization requires considering the interdependencies of multiple parameters. Topology optimization can generate an optimized fin structure directly under specific conditions, simplifying the process and improving performance. This study investigates the effects of penalty index (1–9), filter radius (0.5–3 mm), projection slope (1–9), and projection point (0.1–0.9) on topology-optimized (TO) horizontal fins using variable density method-based continuous topology optimization theory. Results show that selecting appropriate design parameters is crucial for effective fin optimization. Comparing annular fins and TO horizontal fins reveals that TO horizontal fins significantly reduce melting time by up to 65.68 %. Increasing the volume fraction of TO horizontal fins improves melting efficiency to a certain limit, with diminishing returns as the fraction increases. A fin volume fraction of 12.5 % offers the best balance between efficiency and heat storage capacity. Two simplified schemes are proposed: removing thin fins and tips (Simplified Scheme 1) has minimal impact on heat transfer while reducing melting time by 2.5 %, whereas eliminating secondary bifurcation structures (Simplified Scheme 2) slightly decreases performance, increasing melting time by 7.6 %.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"300 ","pages":"Article 113771"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005341","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Adding fin structures enhances the heat transfer performance of latent thermal energy storage (LHTES) units. Current research on fin optimization focuses mainly on single or multiple fin parameters, but fin optimization requires considering the interdependencies of multiple parameters. Topology optimization can generate an optimized fin structure directly under specific conditions, simplifying the process and improving performance. This study investigates the effects of penalty index (1–9), filter radius (0.5–3 mm), projection slope (1–9), and projection point (0.1–0.9) on topology-optimized (TO) horizontal fins using variable density method-based continuous topology optimization theory. Results show that selecting appropriate design parameters is crucial for effective fin optimization. Comparing annular fins and TO horizontal fins reveals that TO horizontal fins significantly reduce melting time by up to 65.68 %. Increasing the volume fraction of TO horizontal fins improves melting efficiency to a certain limit, with diminishing returns as the fraction increases. A fin volume fraction of 12.5 % offers the best balance between efficiency and heat storage capacity. Two simplified schemes are proposed: removing thin fins and tips (Simplified Scheme 1) has minimal impact on heat transfer while reducing melting time by 2.5 %, whereas eliminating secondary bifurcation structures (Simplified Scheme 2) slightly decreases performance, increasing melting time by 7.6 %.
潜热蓄热机组水平拓扑优化翅片的研究
增加翅片结构可以提高潜热储能(LHTES)装置的传热性能。目前对鳍优化的研究主要集中在单个或多个鳍参数上,但鳍优化需要考虑多个参数的相互依赖关系。拓扑优化可以直接在特定条件下生成优化的翅片结构,简化工艺,提高性能。利用基于变密度方法的连续拓扑优化理论,研究了罚指数(1-9)、滤波半径(0.5 - 3mm)、投影斜率(1-9)和投影点(0.1-0.9)对拓扑优化(TO)水平鳍的影响。结果表明,选择合适的设计参数对翅片进行有效优化至关重要。通过对环形翅片和TO水平翅片的比较,发现TO水平翅片可显著缩短熔点熔化时间达65.68%。增加TO水平翅片的体积分数可以在一定程度上提高熔化效率,但随着体积分数的增加,收益递减。12.5%的翅片体积分数提供了效率和蓄热能力之间的最佳平衡。提出了两种简化方案:去除薄翅片和尖端(简化方案1)对传热的影响最小,但可以减少2.5%的熔化时间,而消除二次分叉结构(简化方案2)会略微降低性能,使熔化时间增加7.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信