Extended Huckel DFT-based study of Icosagens passivation at the edge of armchair graphene nanoribbon for next generation nanoelectronics applications

IF 3 Q2 PHYSICS, CONDENSED MATTER
Anshul , Rishu Chaujar
{"title":"Extended Huckel DFT-based study of Icosagens passivation at the edge of armchair graphene nanoribbon for next generation nanoelectronics applications","authors":"Anshul ,&nbsp;Rishu Chaujar","doi":"10.1016/j.micrna.2025.208263","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the impact of edge passivation of pristine armchair graphene nanoribbons (P–AGNRs) with Icosagens group elements - boron (B), aluminum (Al), gallium (Ga), and indium (In) on the performance of graphene nanoribbon field-effect transistors (GNRFETs) for next-generation nano electronic applications. Using a tight-binding Hamiltonian with the Extended Huckel (EH) model and non-equilibrium Green's function (NEGF) approach under a self-consistent formalism (SCF), we evaluate key parameters such as spectral densities, real-space density, Hartree potential, transmission coefficient T(E), and drain current (I<sub>d</sub>). The passivation with Icosagens significantly reduces the bandgap, enhances the density of states (DOS), and increases T(E), compared to pristine AGNRs. These passivated AGNRs, when used as channel materials in gate stack GNRFETs (GS–GNRFETs), demonstrate remarkable improvements: I<sub>on</sub> increases from 1.06 μA to 18.4 μA, I<sub>off</sub> decreases from 1.49 × 10<sup>−10</sup> A to 5.43 × 10<sup>−16</sup> A, and the switching ratio (SR) improves from 0.711 × 10<sup>4</sup> to 0.35 × 10<sup>10</sup>. Analysis of analog performance metrics such as transconductance (g<sub>m</sub>) and device efficiency (DE) reveals that passivation with heavier Icosagens (Al, Ga) enables stronger electrostatic control and enhanced electron transport. Transmission spectrum (TS) and projected local density of states (PLDOS) analyses further support the above findings and the PLDOS contours and transmission pathways (TP) indicating higher tunneling probabilities in Al and Ga - passivated structures. Overall, Al and Ga - GNRFETs emerge as highly promising candidates for high-speed logic, low-power memory, quantum computing, and neuromorphic applications due to their superior switching, low leakage, and efficient charge transport.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208263"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277301232500192X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the impact of edge passivation of pristine armchair graphene nanoribbons (P–AGNRs) with Icosagens group elements - boron (B), aluminum (Al), gallium (Ga), and indium (In) on the performance of graphene nanoribbon field-effect transistors (GNRFETs) for next-generation nano electronic applications. Using a tight-binding Hamiltonian with the Extended Huckel (EH) model and non-equilibrium Green's function (NEGF) approach under a self-consistent formalism (SCF), we evaluate key parameters such as spectral densities, real-space density, Hartree potential, transmission coefficient T(E), and drain current (Id). The passivation with Icosagens significantly reduces the bandgap, enhances the density of states (DOS), and increases T(E), compared to pristine AGNRs. These passivated AGNRs, when used as channel materials in gate stack GNRFETs (GS–GNRFETs), demonstrate remarkable improvements: Ion increases from 1.06 μA to 18.4 μA, Ioff decreases from 1.49 × 10−10 A to 5.43 × 10−16 A, and the switching ratio (SR) improves from 0.711 × 104 to 0.35 × 1010. Analysis of analog performance metrics such as transconductance (gm) and device efficiency (DE) reveals that passivation with heavier Icosagens (Al, Ga) enables stronger electrostatic control and enhanced electron transport. Transmission spectrum (TS) and projected local density of states (PLDOS) analyses further support the above findings and the PLDOS contours and transmission pathways (TP) indicating higher tunneling probabilities in Al and Ga - passivated structures. Overall, Al and Ga - GNRFETs emerge as highly promising candidates for high-speed logic, low-power memory, quantum computing, and neuromorphic applications due to their superior switching, low leakage, and efficient charge transport.
基于扩展Huckel dft的扶手椅石墨烯纳米带边缘Icosagens钝化研究,用于下一代纳米电子学应用
本研究探讨了原始扶手椅石墨烯纳米带(P-AGNRs)与Icosagens族元素(硼(B),铝(Al),镓(Ga)和铟(In))的边缘钝化对下一代纳米电子应用中石墨烯纳米带场效应晶体管(gnrfet)性能的影响。利用扩展Huckel (EH)模型的紧密约束哈密顿量和自洽形式(SCF)下的非平衡格林函数(NEGF)方法,我们评估了谱密度、实空间密度、Hartree势、传输系数T(E)和漏极电流(Id)等关键参数。与原始agnr相比,Icosagens钝化显著减小了带隙,增强了态密度(DOS),并增加了T(E)。这些钝化AGNRs作为栅极堆gnrfet (gs - gnrfet)的沟道材料,表现出显著的改善:离子从1.06 μA增加到18.4 μA,关断从1.49 × 10−10 A降低到5.43 × 10−16 A,开关比(SR)从0.711 × 104提高到0.35 × 1010。模拟性能指标如跨导(gm)和器件效率(DE)的分析表明,使用较重的Icosagens (Al, Ga)进行钝化可以实现更强的静电控制和增强的电子传递。透射谱(TS)和投影局域态密度(PLDOS)分析进一步支持上述发现,PLDOS轮廓和传输路径(TP)表明在Al和Ga钝化结构中有更高的隧穿概率。总的来说,Al和Ga - gnrfet因其优越的开关、低泄漏和高效的电荷传输而成为高速逻辑、低功耗存储器、量子计算和神经形态应用的极有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信