Amine el Mahdi Safhi , Shima Pilehvar , Mahdi Kioumarsi
{"title":"Review of advances and challenges in alkali-activated materials from dredged sediments","authors":"Amine el Mahdi Safhi , Shima Pilehvar , Mahdi Kioumarsi","doi":"10.1016/j.oceram.2025.100824","DOIUrl":null,"url":null,"abstract":"<div><div>Dredging worldwide generates over 1 billion m³ of sediments annually, creating disposal and environmental challenges. Alkali-activated materials (AAMs) offer a circular pathway by converting dredged sediments (DS) into sustainable binders and aggregates. This review synthesizes 32 studies on DS-based AAMs, detailing sediments chemistry, pretreatment routes, mix-design strategies, performance, and field cases. Calcination or mechanochemical activation elevates DS reactivity, producing binders that achieve 28-day compressive strengths of 15–40 MPa and durable matrices resistant to sulfate, freeze–thaw, and carbonation. Processed DS sands can fully or partially replace natural fine aggregates while maintaining ≥25 MPa concrete strength. AAM matrices immobilize heavy metals, keeping leachate below inert-waste thresholds. Key knowledge gaps remain in standardized mix design, long-term durability, and regulatory acceptance. The review outlines research and policy priorities to scale DS-AAM technologies for low-carbon infrastructure.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"23 ","pages":"Article 100824"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539525000914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dredging worldwide generates over 1 billion m³ of sediments annually, creating disposal and environmental challenges. Alkali-activated materials (AAMs) offer a circular pathway by converting dredged sediments (DS) into sustainable binders and aggregates. This review synthesizes 32 studies on DS-based AAMs, detailing sediments chemistry, pretreatment routes, mix-design strategies, performance, and field cases. Calcination or mechanochemical activation elevates DS reactivity, producing binders that achieve 28-day compressive strengths of 15–40 MPa and durable matrices resistant to sulfate, freeze–thaw, and carbonation. Processed DS sands can fully or partially replace natural fine aggregates while maintaining ≥25 MPa concrete strength. AAM matrices immobilize heavy metals, keeping leachate below inert-waste thresholds. Key knowledge gaps remain in standardized mix design, long-term durability, and regulatory acceptance. The review outlines research and policy priorities to scale DS-AAM technologies for low-carbon infrastructure.