{"title":"Investigation of the mechanical behavior of AL7075 plate supported hybrid composite plates using artificial neural networks algorithm","authors":"Burhan Tepehan , İsmail Yasin Sülü","doi":"10.1080/1023666X.2025.2491030","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical behavior of the hybrid structure formed by placing an AL7075 plate as the middle layer between different composite fibers was examined. Glass fiber and carbon fiber were preferred as fibers. Epoxy was used as matrix material. Four different cases with different fiber material layer alignments were examined. The produced plates were cut according to ASTM standards suitable for the tests to be performed, and samples were created. The samples were subjected to tensile tests, three-point bending tests, and ballistic tests. It has been determined that samples produced in sequential order with different layers reached high stress values in tensile tests and bending tests. It was observed that all alignments gave successful results in ballistic tests. In layered hybrid structures, the mechanical effects of the layer order and the type of material used on the hybrid structures have been demonstrated. The Levenberg-Marquardt algorithm with artificial neural networks was applied to investigate the appropriateness of the results. The results were presented to be appropriate in the graphs created with artificial neural networks, and it could be said that they were compatible. It can be said that more effective results are obtained in the combinations of carbon/glass/carbon and glass/carbon/glass composite fibers in layer arrangements.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"30 5","pages":"Pages 543-562"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X25000228","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical behavior of the hybrid structure formed by placing an AL7075 plate as the middle layer between different composite fibers was examined. Glass fiber and carbon fiber were preferred as fibers. Epoxy was used as matrix material. Four different cases with different fiber material layer alignments were examined. The produced plates were cut according to ASTM standards suitable for the tests to be performed, and samples were created. The samples were subjected to tensile tests, three-point bending tests, and ballistic tests. It has been determined that samples produced in sequential order with different layers reached high stress values in tensile tests and bending tests. It was observed that all alignments gave successful results in ballistic tests. In layered hybrid structures, the mechanical effects of the layer order and the type of material used on the hybrid structures have been demonstrated. The Levenberg-Marquardt algorithm with artificial neural networks was applied to investigate the appropriateness of the results. The results were presented to be appropriate in the graphs created with artificial neural networks, and it could be said that they were compatible. It can be said that more effective results are obtained in the combinations of carbon/glass/carbon and glass/carbon/glass composite fibers in layer arrangements.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.