FEM-implicit/explicit surface mesh discrete schemes for 2D-3C time-dependent shallow shell problem

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Rongfang Wu , Xiaoqin Shen , Ying Liu , Yumin Cheng
{"title":"FEM-implicit/explicit surface mesh discrete schemes for 2D-3C time-dependent shallow shell problem","authors":"Rongfang Wu ,&nbsp;Xiaoqin Shen ,&nbsp;Ying Liu ,&nbsp;Yumin Cheng","doi":"10.1016/j.cam.2025.116878","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we propose the finite element method (FEM) coupled implicit/explicit time difference schemes for the two-dimensional three-component (2D-3C) shallow shell surface equation, which features the second-order time variable and fourth-order space variable. Concretely, the higher-order spatial variable is discretized by employing a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-conforming element; meanwhile, the existence and uniqueness of semi-discrete solutions for the shallow shell model are analyzed using eigenvalues, and the optimal error estimate is obtained. Then, the time variable is discretized using the Newmark format. We prove that the space–time fully discretization scheme achieves first-order convergence when the parameter <span><math><mrow><mi>γ</mi><mo>≠</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>. In addition, we adopt the leapfrog format to improve the convergence, which achieves second-order accuracy within small time steps. Finally, numerical experiments are conducted to validate the stability and efficiency of numerical algorithms.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"473 ","pages":"Article 116878"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725003929","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose the finite element method (FEM) coupled implicit/explicit time difference schemes for the two-dimensional three-component (2D-3C) shallow shell surface equation, which features the second-order time variable and fourth-order space variable. Concretely, the higher-order spatial variable is discretized by employing a C1-conforming element; meanwhile, the existence and uniqueness of semi-discrete solutions for the shallow shell model are analyzed using eigenvalues, and the optimal error estimate is obtained. Then, the time variable is discretized using the Newmark format. We prove that the space–time fully discretization scheme achieves first-order convergence when the parameter γ0.5. In addition, we adopt the leapfrog format to improve the convergence, which achieves second-order accuracy within small time steps. Finally, numerical experiments are conducted to validate the stability and efficiency of numerical algorithms.
2D-3C时变浅壳问题的有限元隐/显曲面网格离散格式
本文提出了含二阶时间变量和四阶空间变量的二维三分量(2D-3C)浅壳面方程的有限元法(FEM)耦合隐/显时差格式。具体地说,高阶空间变量采用c1 -符合元离散化;同时,利用特征值分析了浅壳模型半离散解的存在唯一性,得到了最优误差估计。然后,使用Newmark格式对时间变量进行离散化。证明了当参数γ≠0.5时,时空完全离散化方案达到一阶收敛。此外,我们采用了跨越式格式来提高收敛性,在小时间步长内实现了二阶精度。最后,通过数值实验验证了数值算法的稳定性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信