{"title":"Effect of hydrotalcite on the thermal stabilization performance of natural antioxidant vitamin E in Ziegler-Natta polyethylene","authors":"Guangxin Zhao , Fushan Wang , Jiachun Feng","doi":"10.1016/j.polymdegradstab.2025.111534","DOIUrl":null,"url":null,"abstract":"<div><div>Residual catalysts in Ziegler-Natta (ZN) polyolefins usually significantly impair the effectiveness of antioxidants and the incorporation of acid scavengers is an effective method to mitigate these detrimental effects. With the increasing use of natural antioxidants like vitamin E (VE) in human-safety applications, whether their stabilizing effectiveness is affected by catalyst residues and whether traditional acid scavengers remain effective have become key issues requiring urgent resolution. This study systematically investigated the impact of hydrotalcite, a conventional acid scavenger, on VE's thermal stabilization performance in ZN polyethylene (ZN-PE). The results demonstrated that combining 500 ppm VE with 500 ppm hydrotalcite significantly extended the oxidation induction time of ZN-PE to 55.7 min at 190 °C, which surpassed the 30.7 min achieved by 1000 ppm VE alone. The changes in chemical structure, mechanical properties, and color of different samples after multiple extrusions and accelerated aging further confirmed the strong synergistic effect of VE and hydrotalcite in enhancing the thermal-oxidative stability of ZN-PE. Mechanistic investigations revealed that hydrotalcite primarily functioned by eliminating the impairment of VE’s antioxidant efficiency caused by the ZN catalyst. Additionally, hydrotalcite exhibited a certain adsorption effect on VE, which could control the release of VE, thereby extending its antioxidant efficiency in ZN-PE. These findings highlight the critical role of acid scavengers in optimizing VE performance, providing an effective strategy to optimize the use of natural antioxidants in ZN polyolefin stabilization.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"241 ","pages":"Article 111534"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025003635","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Residual catalysts in Ziegler-Natta (ZN) polyolefins usually significantly impair the effectiveness of antioxidants and the incorporation of acid scavengers is an effective method to mitigate these detrimental effects. With the increasing use of natural antioxidants like vitamin E (VE) in human-safety applications, whether their stabilizing effectiveness is affected by catalyst residues and whether traditional acid scavengers remain effective have become key issues requiring urgent resolution. This study systematically investigated the impact of hydrotalcite, a conventional acid scavenger, on VE's thermal stabilization performance in ZN polyethylene (ZN-PE). The results demonstrated that combining 500 ppm VE with 500 ppm hydrotalcite significantly extended the oxidation induction time of ZN-PE to 55.7 min at 190 °C, which surpassed the 30.7 min achieved by 1000 ppm VE alone. The changes in chemical structure, mechanical properties, and color of different samples after multiple extrusions and accelerated aging further confirmed the strong synergistic effect of VE and hydrotalcite in enhancing the thermal-oxidative stability of ZN-PE. Mechanistic investigations revealed that hydrotalcite primarily functioned by eliminating the impairment of VE’s antioxidant efficiency caused by the ZN catalyst. Additionally, hydrotalcite exhibited a certain adsorption effect on VE, which could control the release of VE, thereby extending its antioxidant efficiency in ZN-PE. These findings highlight the critical role of acid scavengers in optimizing VE performance, providing an effective strategy to optimize the use of natural antioxidants in ZN polyolefin stabilization.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.