Toward long-range ENSO prediction with an explainable deep learning model

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Qi Chen, Yinghao Cui, Guobin Hong, Karumuri Ashok, Yuchun Pu, Xiaogu Zheng, Xuanze Zhang, Wei Zhong, Peng Zhan, Zhonglei Wang
{"title":"Toward long-range ENSO prediction with an explainable deep learning model","authors":"Qi Chen, Yinghao Cui, Guobin Hong, Karumuri Ashok, Yuchun Pu, Xiaogu Zheng, Xuanze Zhang, Wei Zhong, Peng Zhan, Zhonglei Wang","doi":"10.1038/s41612-025-01159-w","DOIUrl":null,"url":null,"abstract":"<p>El Niño-Southern Oscillation (ENSO) is a prominent mode of interannual climate variability with far-reaching global impacts. Its evolution is governed by intricate air-sea interactions, posing significant challenges for long-term prediction. In this study, we introduce CTEFNet, a multivariate deep learning model that synergizes convolutional neural networks and transformers to enhance ENSO forecasting. By integrating multiple oceanic and atmospheric predictors, CTEFNet extends the effective forecast lead time to 20 months while mitigating the impact of the spring predictability barrier, outperforming both dynamical models and state-of-the-art deep learning approaches. Furthermore, CTEFNet offers physically meaningful and statistically significant insights through gradient-based sensitivity analysis, revealing the key precursor signals that govern ENSO dynamics, which align with well-established theories and reveal new insights about inter-basin interactions among the Pacific, Atlantic, and Indian Oceans. The CTEFNet’s superior predictive skill and interpretable sensitivity assessments underscore its potential for advancing climate prediction. Our findings highlight the importance of multivariate coupling in ENSO evolution and demonstrate the promise of deep learning in capturing complex climate dynamics with enhanced interpretability.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"8 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01159-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

El Niño-Southern Oscillation (ENSO) is a prominent mode of interannual climate variability with far-reaching global impacts. Its evolution is governed by intricate air-sea interactions, posing significant challenges for long-term prediction. In this study, we introduce CTEFNet, a multivariate deep learning model that synergizes convolutional neural networks and transformers to enhance ENSO forecasting. By integrating multiple oceanic and atmospheric predictors, CTEFNet extends the effective forecast lead time to 20 months while mitigating the impact of the spring predictability barrier, outperforming both dynamical models and state-of-the-art deep learning approaches. Furthermore, CTEFNet offers physically meaningful and statistically significant insights through gradient-based sensitivity analysis, revealing the key precursor signals that govern ENSO dynamics, which align with well-established theories and reveal new insights about inter-basin interactions among the Pacific, Atlantic, and Indian Oceans. The CTEFNet’s superior predictive skill and interpretable sensitivity assessments underscore its potential for advancing climate prediction. Our findings highlight the importance of multivariate coupling in ENSO evolution and demonstrate the promise of deep learning in capturing complex climate dynamics with enhanced interpretability.

Abstract Image

用可解释的深度学习模型进行长期ENSO预测
El Niño-Southern涛动(ENSO)是年际气候变率的重要模式,具有深远的全球影响。它的演变受复杂的海气相互作用的支配,这对长期预测构成了重大挑战。在这项研究中,我们引入了CTEFNet,这是一个多元深度学习模型,它协同卷积神经网络和变压器来增强ENSO预测。通过整合多种海洋和大气预测器,CTEFNet将有效预测提前期延长至20个月,同时减轻了春季可预测性障碍的影响,优于动态模型和最先进的深度学习方法。此外,CTEFNet通过基于梯度的敏感性分析提供了物理上有意义和统计上有意义的见解,揭示了控制ENSO动力学的关键前兆信号,这些信号与成熟的理论相一致,并揭示了太平洋、大西洋和印度洋之间盆地间相互作用的新见解。CTEFNet卓越的预测技巧和可解释的敏感性评估强调了它在推进气候预测方面的潜力。我们的研究结果强调了ENSO演变中多元耦合的重要性,并展示了深度学习在捕获具有增强可解释性的复杂气候动力学方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信