Meng-Yen Lin, Kristen Severson, Paul Grandgeorge, Eleftheria Roumeli
{"title":"Closed-loop optimization using machine learning for the accelerated design of sustainable cements incorporating algal biomatter","authors":"Meng-Yen Lin, Kristen Severson, Paul Grandgeorge, Eleftheria Roumeli","doi":"10.1016/j.matt.2025.102267","DOIUrl":null,"url":null,"abstract":"The substantial embodied carbon of cement, coupled with the ever-increasing need for construction materials, motivates the need for more sustainable cementitious materials. An emerging strategy to mitigate CO<sub>2</sub> emissions involves incorporating carbon-negative biomatter; however, this introduces new challenges due to complex hydration-strength relationships and the combinatorial design space. Here, using machine learning, we develop a closed-loop optimization strategy to accelerate green-cement design with minimal CO<sub>2</sub> emissions while meeting compressive-strength criterion. Green cements incorporating algae are tested in real time to predict strength evolution, with early-stopping criteria applied to accelerate the optimization process. This approach, using only 28 days of experiment time, attains both the strength requirement and 93% of the achievable improvement in global warming potential (GWP), resulting in a cement that has a 21% reduction in GWP. We further validate model-informed relationships via analysis of hydration, demonstrating the potential for developing materials grounded in scientific understanding.","PeriodicalId":388,"journal":{"name":"Matter","volume":"21 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102267","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The substantial embodied carbon of cement, coupled with the ever-increasing need for construction materials, motivates the need for more sustainable cementitious materials. An emerging strategy to mitigate CO2 emissions involves incorporating carbon-negative biomatter; however, this introduces new challenges due to complex hydration-strength relationships and the combinatorial design space. Here, using machine learning, we develop a closed-loop optimization strategy to accelerate green-cement design with minimal CO2 emissions while meeting compressive-strength criterion. Green cements incorporating algae are tested in real time to predict strength evolution, with early-stopping criteria applied to accelerate the optimization process. This approach, using only 28 days of experiment time, attains both the strength requirement and 93% of the achievable improvement in global warming potential (GWP), resulting in a cement that has a 21% reduction in GWP. We further validate model-informed relationships via analysis of hydration, demonstrating the potential for developing materials grounded in scientific understanding.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.