{"title":"Host protein ARF1 is a proviral factor for SARS-CoV-2 and a candidate broad-spectrum therapeutic target","authors":"Cunhuan Zhang, Yuan-Qin Min, Heng Xue, Haiyan Zhang, Kunpeng Liu, Yichao Tian, Ziying Yang, Zihan Zhao, Hang Yang, Chao Shan, Xiulian Sun, Yun-Jia Ning","doi":"10.1038/s41467-025-61431-8","DOIUrl":null,"url":null,"abstract":"<p>SARS-CoV-2 and its emerging variants pose continuing threats to public health. SARS-CoV-2 assembles at the ER–Golgi intermediate compartment (ERGIC), where the viral membrane (M) protein highly accumulates to act as the central driver. However, how M is concentrated in the ERGIC, which hosts factor(s), may be involved, and whether they could be exploited as broad-spectrum antiviral targets remains unclear. Here, we identify an M-interacting host protein, ARF1, as a proviral factor that bolsters the propagation of SARS-CoV-2 and its variants in cultured cells and the viral infection and pathogenicity in female K18-hACE2 mice. By its N-terminal helix, ARF1 interacts with M and facilitates M’s ERGIC accumulation and thus M-driven virion production. Consistently, pharmacological ARF1 inhibition by small molecules disrupts both ARF1 and M concentration at the ERGIC, blocking virion assembly and propagation. Furthermore, a designed peptide mimicking the M-targeted motif of ARF1 competitively blocks M-ARF1 interaction, M accumulation at the ERGIC, and viral assembly and propagation in vitro. Moreover, the peptidomimetic inhibitor exhibits therapeutic efficacy against SARS-CoV-2 infection and pathogenicity in vivo. These findings provide critical insights into the basic biology of SARS-CoV-2 and demonstrate the potential to develop pan-SARS-CoV-2 therapeutics by targeting ARF1 and/or the ARF1-M interaction interface.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"29 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61431-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
SARS-CoV-2 and its emerging variants pose continuing threats to public health. SARS-CoV-2 assembles at the ER–Golgi intermediate compartment (ERGIC), where the viral membrane (M) protein highly accumulates to act as the central driver. However, how M is concentrated in the ERGIC, which hosts factor(s), may be involved, and whether they could be exploited as broad-spectrum antiviral targets remains unclear. Here, we identify an M-interacting host protein, ARF1, as a proviral factor that bolsters the propagation of SARS-CoV-2 and its variants in cultured cells and the viral infection and pathogenicity in female K18-hACE2 mice. By its N-terminal helix, ARF1 interacts with M and facilitates M’s ERGIC accumulation and thus M-driven virion production. Consistently, pharmacological ARF1 inhibition by small molecules disrupts both ARF1 and M concentration at the ERGIC, blocking virion assembly and propagation. Furthermore, a designed peptide mimicking the M-targeted motif of ARF1 competitively blocks M-ARF1 interaction, M accumulation at the ERGIC, and viral assembly and propagation in vitro. Moreover, the peptidomimetic inhibitor exhibits therapeutic efficacy against SARS-CoV-2 infection and pathogenicity in vivo. These findings provide critical insights into the basic biology of SARS-CoV-2 and demonstrate the potential to develop pan-SARS-CoV-2 therapeutics by targeting ARF1 and/or the ARF1-M interaction interface.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.