Synergistic Mn-Cr Co-doping in Na3V2(PO4)2O2F Promising Cathode: Unlocking Superior Performance for Next-Generation Sodium-Ion Batteries

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-09 DOI:10.1002/smll.202504006
Mohammad Zaid, Masiyappan Karuppusamy, Biplab Patra, Kiran Kumar Garlapati, Natarajan Arul Murugan, Premkumar Senguttuvan, Vilas G. Pol, Surendra Kumar Martha
{"title":"Synergistic Mn-Cr Co-doping in Na3V2(PO4)2O2F Promising Cathode: Unlocking Superior Performance for Next-Generation Sodium-Ion Batteries","authors":"Mohammad Zaid,&nbsp;Masiyappan Karuppusamy,&nbsp;Biplab Patra,&nbsp;Kiran Kumar Garlapati,&nbsp;Natarajan Arul Murugan,&nbsp;Premkumar Senguttuvan,&nbsp;Vilas G. Pol,&nbsp;Surendra Kumar Martha","doi":"10.1002/smll.202504006","DOIUrl":null,"url":null,"abstract":"<p>Sodium vanadium fluorophosphate (Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F, NVOPF), with a NASICON framework, is a promising cathode material due to its robust 3D structure, high operating potential (∼3.8 V), and theoretical energy density (≈494 Wh kg<sup>−1</sup>). However, its commercial viability is limited by low electronic conductivity and a reduced practical energy density. To address these limitations, vanadium in NVOPF is partially substituted with cost-effective Mn and Cr via a one-pot solvothermal method. This co-doping induces lattice distortion, enhances Na⁺ diffusion kinetics, and improves ionic/electronic conductivity, as confirmed by DFT calculations. The optimized Na<sub>3</sub>V<sub>1.9</sub>Mn<sub>0.095</sub>Cr<sub>0.005</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F (NVMC-95) cathode delivers an initial discharge capacity of 120 mAh g<sup>−1</sup> at 0.1 C and 87 mAh g<sup>−1</sup> at 20 C, with 94% capacity retention after 500 cycles at 1 C and 76% after 2000 cycles at 5 C. The co-doped NVOPF exhibits excellent thermal stability at 40 °C, retaining 91% of its capacity over 400 cycles at 2 C. In a full-cell configuration (NVMC-95//hard carbon), the system delivers 110 mAh g⁻¹ at 3.75 V, retaining 97% capacity over 100 cycles at 0.2 C. Mn/Cr co-doping synergy in Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F enhances Na⁺ transport, reduces impedance, accelerates diffusion kinetics, and stabilizes cycling, enabling durable NASICON-type cathodes with extended cycle life for practical applications.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 35","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504006","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium vanadium fluorophosphate (Na3V2O2(PO4)2F, NVOPF), with a NASICON framework, is a promising cathode material due to its robust 3D structure, high operating potential (∼3.8 V), and theoretical energy density (≈494 Wh kg−1). However, its commercial viability is limited by low electronic conductivity and a reduced practical energy density. To address these limitations, vanadium in NVOPF is partially substituted with cost-effective Mn and Cr via a one-pot solvothermal method. This co-doping induces lattice distortion, enhances Na⁺ diffusion kinetics, and improves ionic/electronic conductivity, as confirmed by DFT calculations. The optimized Na3V1.9Mn0.095Cr0.005O2(PO4)2F (NVMC-95) cathode delivers an initial discharge capacity of 120 mAh g−1 at 0.1 C and 87 mAh g−1 at 20 C, with 94% capacity retention after 500 cycles at 1 C and 76% after 2000 cycles at 5 C. The co-doped NVOPF exhibits excellent thermal stability at 40 °C, retaining 91% of its capacity over 400 cycles at 2 C. In a full-cell configuration (NVMC-95//hard carbon), the system delivers 110 mAh g⁻¹ at 3.75 V, retaining 97% capacity over 100 cycles at 0.2 C. Mn/Cr co-doping synergy in Na3V2O2(PO4)2F enhances Na⁺ transport, reduces impedance, accelerates diffusion kinetics, and stabilizes cycling, enabling durable NASICON-type cathodes with extended cycle life for practical applications.

Abstract Image

Na3V2(PO4)2O2F阴极协同Mn - Cr Co掺杂:解锁下一代钠离子电池的优越性能
氟磷酸钒钠(Na3V2O2(PO4)2F, NVOPF)具有NASICON框架,由于其坚固的3D结构,高工作电位(~ 3.8 V)和理论能量密度(≈494 Wh kg−1),是一种很有前途的阴极材料。然而,其商业可行性受到低电子导电性和降低的实际能量密度的限制。为了解决这些限制,通过一锅溶剂热法,将NVOPF中的钒部分替换为具有成本效益的Mn和Cr。DFT计算证实,这种共掺杂诱导了晶格畸变,增强了Na⁺的扩散动力学,并提高了离子/电子导电性。优化Na3V1.9Mn0.095Cr0.005O2 (PO4) 2 f (NVMC量95)阴极提供的初始放电容量120 mAh在0.1 C和g−1 87 mAh在20 g−1 C, 500次后保留94%的容量在2000 C和76%,周期在5 C公司检测掺杂NVOPF展览优秀的热稳定性在40°C,保留91%的容量超过400个周期在2 C一个完整单元配置(NVMC还是95 / /硬碳),系统提供110 mAh g⁻¹3.75 V,在0.2℃下,在100次循环中保持97%的容量。Na3V2O2(PO4)2F中的Mn/Cr共掺杂协同作用增强了Na +的传输,降低了阻抗,加速了扩散动力学,并稳定了循环,为实际应用提供了耐用的NASICON型阴极,延长了循环寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信