Xinyuan He,Baochuan Hu,Xin Wang,Xing Feng,Xinyuan Wang,Xinmeng Chen,Jianwei Sun,Jacky W Y Lam,Lianrui Hu,Ben Zhong Tang
{"title":"A chameleon AIEgen exhibiting six distinct yet tunable thermal and photoswitchable states.","authors":"Xinyuan He,Baochuan Hu,Xin Wang,Xing Feng,Xinyuan Wang,Xinmeng Chen,Jianwei Sun,Jacky W Y Lam,Lianrui Hu,Ben Zhong Tang","doi":"10.1038/s41467-025-61717-x","DOIUrl":null,"url":null,"abstract":"Seeking methods to realize multiple fluorescence changes in a single luminogenic system is of great importance for both chemistry and bionics research. Due to the lack of effective strategies and functional motifs, luminogens with multiple switching and controllable models are still scarce. Herein, we report a chromone-based aggregation-induced emission luminogen called Z-CDPM, which exhibit six distinct, tunable thermal and photoswitchable states, offering controllable thermochromic or photochromic behavior under varying conditions. Specifically, five different reactions are involved: reversible Z/E isomerization, irreversible cyclization and elimination under thermal treatment, and photoarrangement of Z-CDPM and its thermal cyclization product under UV irradiation. The relative independence of the switching states is effectively maintained. Experimental and theoretical analyses validate our design strategies and provide valuable insights into the detailed mechanisms of these reactions, and single crystals further confirm their structures. Additionally, practical applications, including multiple-colored images, quick response codes, and an advanced information encryption system, are developed to demonstrate the utility. This work thus provides effective strategies and structural motifs for the design of multiresponsive luminogens and multifunctional systems.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"41 1","pages":"6312"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61717-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Seeking methods to realize multiple fluorescence changes in a single luminogenic system is of great importance for both chemistry and bionics research. Due to the lack of effective strategies and functional motifs, luminogens with multiple switching and controllable models are still scarce. Herein, we report a chromone-based aggregation-induced emission luminogen called Z-CDPM, which exhibit six distinct, tunable thermal and photoswitchable states, offering controllable thermochromic or photochromic behavior under varying conditions. Specifically, five different reactions are involved: reversible Z/E isomerization, irreversible cyclization and elimination under thermal treatment, and photoarrangement of Z-CDPM and its thermal cyclization product under UV irradiation. The relative independence of the switching states is effectively maintained. Experimental and theoretical analyses validate our design strategies and provide valuable insights into the detailed mechanisms of these reactions, and single crystals further confirm their structures. Additionally, practical applications, including multiple-colored images, quick response codes, and an advanced information encryption system, are developed to demonstrate the utility. This work thus provides effective strategies and structural motifs for the design of multiresponsive luminogens and multifunctional systems.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.