{"title":"Manipulation of the central autophagy component ZmATG8c affects thermotolerance in maize.","authors":"Li Ma,Ziran Zhang,Mengli Liu,Zhe Wang,Xinghua Zhang,Xinyang Guo,Jingyi Zhang,Junjie Hu,Wanchao Zhu,Qing Li,Shutu Xu,Jiquan Xue","doi":"10.1093/plphys/kiaf299","DOIUrl":null,"url":null,"abstract":"Rising global temperatures present a substantial threat to crop production. Autophagy is an important catabolic process that promotes plant survival under stress, and AuTophaGy-related 8 (ATG8) proteins play key roles in plant autophagy, although the contributions of specific ATG8 isoforms to heat tolerance remain to be clarified. Here, we demonstrate that heat-induced expression of ZmATG8c promotes maize (Zea mays L.) thermotolerance during both vegetative and reproductive growth stages. ZmATG8c-knockout mutants showed lower seedling survival and grain yield under heat stress, whereas plants overexpressing ZmATG8c exhibited enhanced seedling survival and improved yield, which were attributable to greater autophagosome production, elevated levels of ATG8, and reduced accumulation of ubiquitinated protein aggregates. We also found that the heat-induced bZIP transcription factor ZmGBF1 could bind directly to the promoter of ZmATG8c and facilitate its expression. Maize gbf1 mutants showed significant inhibition of ZmATG8c thermal induction and increased sensitivity to heat stress. Our findings demonstrate that ZmATG8c and ZmGBF1 have a role in mediating thermotolerance, providing promising targets for engineering maize with improved resilience to thermal stress.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"33 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf299","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rising global temperatures present a substantial threat to crop production. Autophagy is an important catabolic process that promotes plant survival under stress, and AuTophaGy-related 8 (ATG8) proteins play key roles in plant autophagy, although the contributions of specific ATG8 isoforms to heat tolerance remain to be clarified. Here, we demonstrate that heat-induced expression of ZmATG8c promotes maize (Zea mays L.) thermotolerance during both vegetative and reproductive growth stages. ZmATG8c-knockout mutants showed lower seedling survival and grain yield under heat stress, whereas plants overexpressing ZmATG8c exhibited enhanced seedling survival and improved yield, which were attributable to greater autophagosome production, elevated levels of ATG8, and reduced accumulation of ubiquitinated protein aggregates. We also found that the heat-induced bZIP transcription factor ZmGBF1 could bind directly to the promoter of ZmATG8c and facilitate its expression. Maize gbf1 mutants showed significant inhibition of ZmATG8c thermal induction and increased sensitivity to heat stress. Our findings demonstrate that ZmATG8c and ZmGBF1 have a role in mediating thermotolerance, providing promising targets for engineering maize with improved resilience to thermal stress.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.