Distinctive Plasma Engineering Ensuring Deep Reconstruction of Heterostructured Ni2P/Fe2P Into Metal Oxyhydroxides With Activated Lattice Oxygen for Water Oxidation at Industrial Current Density

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Luchun Qiu, Anqi Dong, Ping Yan, Yunxiang Lin, Xin‐Yao Yu
{"title":"Distinctive Plasma Engineering Ensuring Deep Reconstruction of Heterostructured Ni2P/Fe2P Into Metal Oxyhydroxides With Activated Lattice Oxygen for Water Oxidation at Industrial Current Density","authors":"Luchun Qiu, Anqi Dong, Ping Yan, Yunxiang Lin, Xin‐Yao Yu","doi":"10.1002/adfm.202508353","DOIUrl":null,"url":null,"abstract":"The deep reconstruction of transition metal‐based pre‐catalysts into metal oxyhydroxides as true catalytic species for oxygen evolution reaction (OER) can maximize the exposure of active sites and realize high mass activity. However, it is still challenging to achieve the deep reconstruction of pre‐catalysts. Herein, taking heterostructured Ni<jats:sub>2</jats:sub>P/Fe<jats:sub>2</jats:sub>P as an example, a distinctive H<jats:sub>2</jats:sub> plasma engineering tactic is introduced to promote the complete reconstruction of Ni<jats:sub>2</jats:sub>P/Fe<jats:sub>2</jats:sub>P into NiOOH/FeOOH (NiFeOOH) during activation process. Interestingly, plasma treatment creates abundant phosphorus vacancies (denoted as P<jats:sub><jats:italic>v</jats:italic></jats:sub>) in Ni<jats:sub>2</jats:sub>P while induces amorphization of Fe<jats:sub>2</jats:sub>P. In/ex situ characterizations and theoretical calculations reveal that the presence of P<jats:sub><jats:italic>v</jats:italic></jats:sub> in Ni<jats:sub>2</jats:sub>P and amorphous structure of Fe<jats:sub>2</jats:sub>P can notably lower the reconstructed potential, effectively accelerating the conversion of the Ni<jats:sub>2</jats:sub>P/Fe<jats:sub>2</jats:sub>P to NiFeOOH. Benefiting from the defect‐rich structure and activated lattice oxygen, the as‐reconstructed NiFeOOH exhibits superior OER activity (240 mV at 500 mA cm<jats:sup>−2</jats:sup>) and long stability (up to 500 h at 500 mA cm<jats:sup>−2</jats:sup>) in alkaline solution. Remarkably, the alkaline water electrolyzer (AWE) based on NiFeOOH anode and Ni<jats:sub>2</jats:sub>P/Fe<jats:sub>2</jats:sub>P cathode demonstrates exceptional durability of 500 h at 1000 mA cm<jats:sup>−2</jats:sup> in KOH at 60 °C. Furthermore, the developed AWE also features excellent performance for real seawater electrolysis.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"10 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202508353","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The deep reconstruction of transition metal‐based pre‐catalysts into metal oxyhydroxides as true catalytic species for oxygen evolution reaction (OER) can maximize the exposure of active sites and realize high mass activity. However, it is still challenging to achieve the deep reconstruction of pre‐catalysts. Herein, taking heterostructured Ni2P/Fe2P as an example, a distinctive H2 plasma engineering tactic is introduced to promote the complete reconstruction of Ni2P/Fe2P into NiOOH/FeOOH (NiFeOOH) during activation process. Interestingly, plasma treatment creates abundant phosphorus vacancies (denoted as Pv) in Ni2P while induces amorphization of Fe2P. In/ex situ characterizations and theoretical calculations reveal that the presence of Pv in Ni2P and amorphous structure of Fe2P can notably lower the reconstructed potential, effectively accelerating the conversion of the Ni2P/Fe2P to NiFeOOH. Benefiting from the defect‐rich structure and activated lattice oxygen, the as‐reconstructed NiFeOOH exhibits superior OER activity (240 mV at 500 mA cm−2) and long stability (up to 500 h at 500 mA cm−2) in alkaline solution. Remarkably, the alkaline water electrolyzer (AWE) based on NiFeOOH anode and Ni2P/Fe2P cathode demonstrates exceptional durability of 500 h at 1000 mA cm−2 in KOH at 60 °C. Furthermore, the developed AWE also features excellent performance for real seawater electrolysis.
独特的等离子体工程确保异质结构Ni2P/Fe2P深度重构成具有活性点阵氧的金属氢氧化物,用于工业电流密度下的水氧化
将过渡金属基预催化剂深度重构为金属氢氧化物作为析氧反应(OER)的真正催化物质,可以最大限度地暴露活性位点,实现高质量活性。然而,实现预催化剂的深度重构仍然是一个挑战。本文以异质结构Ni2P/Fe2P为例,引入了一种独特的H2等离子体工程策略,促进Ni2P/Fe2P在活化过程中完全重构为NiOOH/FeOOH (NiFeOOH)。有趣的是,等离子体处理在Ni2P中产生了丰富的磷空位(表示为Pv),同时诱导了Fe2P的非晶化。原位/非原位表征和理论计算表明,在Ni2P和Fe2P的非晶结构中存在Pv可以显著降低重构电位,有效地加速Ni2P/Fe2P向NiFeOOH的转化。得益于富含缺陷的结构和活化的晶格氧,as -重构的NiFeOOH在碱性溶液中表现出优异的OER活性(500 mA cm - 2时240 mV)和长稳定性(500 mA cm - 2时长达500 h)。值得注意的是,基于NiFeOOH阳极和Ni2P/Fe2P阴极的碱性水电解槽(AWE)在60°C的KOH中,在1000 mA cm - 2下具有500 h的优异耐久性。此外,所开发的AWE在实际海水电解中也具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信