{"title":"Optimizing Multilayer Networks Through Time-Dependent Decision-Making: A Comparative Study.","authors":"Kenan Menguc, Alper Yilmaz","doi":"10.1089/big.2024.0094","DOIUrl":null,"url":null,"abstract":"<p><p>This research highlights the importance of accurately analyzing real-world multilayer network problems and introduces effective solutions. Whether simulating protein-protein network, transportation network, or a social network, representation and analysis over these networks are crucial. Multilayer networks, that contain added layers, may undergo dynamic transformations over time akin to single-layer networks that experience changes over time. These dynamic networks, that expand and contract, can be optimized by guidance from human operators if the transient changes are known and can be controlled. For the expansion and contraction of networks, this study introduces two distinct algorithms designed to make optimal decisions across dynamic changes of a multilayer network. The main strategy is to minimize the standard deviation across betweenness centrality of the edges in a complex network. The approaches we introduce incorporate diverse constraints into a multilayer weighted network, probing the network's expansion or contraction under various conditions represented as objective functions. The addition of changing of objective function enhances the model's adaptability to solve a wide array of problem types. In this way, complex network structures representing real-world problems can be mathematically modeled which makes it easier to make informed decisions.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2024.0094","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This research highlights the importance of accurately analyzing real-world multilayer network problems and introduces effective solutions. Whether simulating protein-protein network, transportation network, or a social network, representation and analysis over these networks are crucial. Multilayer networks, that contain added layers, may undergo dynamic transformations over time akin to single-layer networks that experience changes over time. These dynamic networks, that expand and contract, can be optimized by guidance from human operators if the transient changes are known and can be controlled. For the expansion and contraction of networks, this study introduces two distinct algorithms designed to make optimal decisions across dynamic changes of a multilayer network. The main strategy is to minimize the standard deviation across betweenness centrality of the edges in a complex network. The approaches we introduce incorporate diverse constraints into a multilayer weighted network, probing the network's expansion or contraction under various conditions represented as objective functions. The addition of changing of objective function enhances the model's adaptability to solve a wide array of problem types. In this way, complex network structures representing real-world problems can be mathematically modeled which makes it easier to make informed decisions.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.