Construction of a prediction model for peripheral lymph node metastasis in patients with colorectal cancer based on enhanced CT texture features.

IF 2.5 3区 医学 Q3 ONCOLOGY
Feng Tong, Longfei Zhang, Xiaobin Jiang, Zhenyu Wu
{"title":"Construction of a prediction model for peripheral lymph node metastasis in patients with colorectal cancer based on enhanced CT texture features.","authors":"Feng Tong, Longfei Zhang, Xiaobin Jiang, Zhenyu Wu","doi":"10.1186/s12957-025-03928-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To investigate the analysis of peripheral lymph node metastasis prediction model construction for patients with colorectal cancer based on enhanced CT texture features.</p><p><strong>Methods: </strong>In this study, the clinical data of 200 colorectal cancer patients admitted to our hospital from January 2019 to October 2024 were collected, which were divided into a training set (n = 140) and a validation set (n = 60) according to a 7:3 ratio. The training set was used to construct the prediction model and the validation set was used to evaluate the model performance. Independent influencing factors of peripheral lymph node metastasis in colorectal cancer patients were screened by single-factor and multifactor logistic regression analyses, and the prediction model was finally constructed and analysed for its predictive effect using ROC curves and decision curves.</p><p><strong>Results: </strong>In the training and validation sets, compared with those without lymph node metastasis, colorectal cancer patients with lymph node metastasis had a higher percentage of those whose tumour infiltration depth was submucosal and those whose tumour differentiation was poorly differentiated, and the skewness, kurtosis, and entropy values of their CT texture features were also significantly higher than those without lymph node metastasis (P < 0.05). Multifactorial logistic regression analysis showed that the depth of tumour infiltration was higher for submucosal layer (OR = 3.367, 95% CI = 1.104 ~ 1.271), tumour hypofractionation (OR = 3.881, 95% CI = 1.04714.392), skewness (OR = 3.979, 95% CI = 1.04714.392), kurtosis (OR = 4.824, 95% CI = 2.251 ~ 10.336), and entropy (OR = 2.221, 95% CI = 1.159 ~ 4.257) were independent risk factors for lymph node metastasis in colorectal cancer patients. The consistency index (C-index) of the lymph node metastasis prediction model based on enhanced CT texture features was 0.980, and the calibration curve results were basically consistent with the predicted values; the AUCs of lymph node metastasis prediction for the training and validation sets were 0.937 and 0.960, respectively. Decision curve analysis showed that the clinical decision-making benefit of the model was significantly improved after adding CT texture features.</p><p><strong>Conclusion: </strong>The prediction model based on enhanced CT texture features has good predictive value for predicting peripheral lymph node metastasis in colorectal cancer.</p>","PeriodicalId":23856,"journal":{"name":"World Journal of Surgical Oncology","volume":"23 1","pages":"266"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Surgical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12957-025-03928-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To investigate the analysis of peripheral lymph node metastasis prediction model construction for patients with colorectal cancer based on enhanced CT texture features.

Methods: In this study, the clinical data of 200 colorectal cancer patients admitted to our hospital from January 2019 to October 2024 were collected, which were divided into a training set (n = 140) and a validation set (n = 60) according to a 7:3 ratio. The training set was used to construct the prediction model and the validation set was used to evaluate the model performance. Independent influencing factors of peripheral lymph node metastasis in colorectal cancer patients were screened by single-factor and multifactor logistic regression analyses, and the prediction model was finally constructed and analysed for its predictive effect using ROC curves and decision curves.

Results: In the training and validation sets, compared with those without lymph node metastasis, colorectal cancer patients with lymph node metastasis had a higher percentage of those whose tumour infiltration depth was submucosal and those whose tumour differentiation was poorly differentiated, and the skewness, kurtosis, and entropy values of their CT texture features were also significantly higher than those without lymph node metastasis (P < 0.05). Multifactorial logistic regression analysis showed that the depth of tumour infiltration was higher for submucosal layer (OR = 3.367, 95% CI = 1.104 ~ 1.271), tumour hypofractionation (OR = 3.881, 95% CI = 1.04714.392), skewness (OR = 3.979, 95% CI = 1.04714.392), kurtosis (OR = 4.824, 95% CI = 2.251 ~ 10.336), and entropy (OR = 2.221, 95% CI = 1.159 ~ 4.257) were independent risk factors for lymph node metastasis in colorectal cancer patients. The consistency index (C-index) of the lymph node metastasis prediction model based on enhanced CT texture features was 0.980, and the calibration curve results were basically consistent with the predicted values; the AUCs of lymph node metastasis prediction for the training and validation sets were 0.937 and 0.960, respectively. Decision curve analysis showed that the clinical decision-making benefit of the model was significantly improved after adding CT texture features.

Conclusion: The prediction model based on enhanced CT texture features has good predictive value for predicting peripheral lymph node metastasis in colorectal cancer.

基于增强CT纹理特征的结直肠癌外周淋巴结转移预测模型构建
背景:探讨基于增强CT纹理特征的结直肠癌患者外周淋巴结转移预测模型构建分析。方法:本研究收集我院2019年1月至2024年10月收治的200例结直肠癌患者的临床资料,按7:3的比例分为训练集(n = 140)和验证集(n = 60)。训练集用于构建预测模型,验证集用于评估模型的性能。通过单因素和多因素logistic回归分析筛选结直肠癌患者外周淋巴结转移的独立影响因素,最终构建预测模型,并利用ROC曲线和决策曲线分析其预测效果。结果:在训练集和验证集中,与无淋巴结转移的患者相比,有淋巴结转移的结直肠癌患者肿瘤浸润深度在粘膜下和肿瘤分化差的比例更高,其CT纹理特征的偏度、峰度和熵值也显著高于无淋巴结转移的患者(P)。基于增强CT纹理特征的预测模型对预测结直肠癌周围淋巴结转移有较好的预测价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
15.60%
发文量
362
审稿时长
3 months
期刊介绍: World Journal of Surgical Oncology publishes articles related to surgical oncology and its allied subjects, such as epidemiology, cancer research, biomarkers, prevention, pathology, radiology, cancer treatment, clinical trials, multimodality treatment and molecular biology. Emphasis is placed on original research articles. The journal also publishes significant clinical case reports, as well as balanced and timely reviews on selected topics. Oncology is a multidisciplinary super-speciality of which surgical oncology forms an integral component, especially with solid tumors. Surgical oncologists around the world are involved in research extending from detecting the mechanisms underlying the causation of cancer, to its treatment and prevention. The role of a surgical oncologist extends across the whole continuum of care. With continued developments in diagnosis and treatment, the role of a surgical oncologist is ever-changing. Hence, World Journal of Surgical Oncology aims to keep readers abreast with latest developments that will ultimately influence the work of surgical oncologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信