{"title":"Microglial landscape and signaling in spinal cord injury.","authors":"Qingsheng Zhou, Jianchao Liu, Qiongxuan Fang, Chunming Zhang, Wei Liu, Yifeng Sun","doi":"10.1038/s41393-025-01103-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Study design: </strong>An integrated bioinformatics data study.</p><p><strong>Objectives: </strong>This study uses bioinformatics analysis to map the microglial landscape, investigate key signaling pathways, and reveal the molecular mechanisms that facilitate SCI recovery.</p><p><strong>Setting: </strong>Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University.</p><p><strong>Methods: </strong>In this study, we performed an integrative bioinformatics analysis of single-cell RNA sequencing (scRNA-seq), spatial transcriptomic (ST), and bulk RNA-seq datasets from the Gene Expression Omnibus (GEO), utilizing R packages (Seurat, DESeq2, limma, GSVA) and the Enrichr platform.</p><p><strong>Results: </strong>Single-cell and spatial transcriptomic profiling uncovered dynamic shifts in the microglial landscape post-SCI, characterized by the suppression of innate microglial populations alongside the expansion of reactive microglial subsets. Mechanistically, the TGFβ signaling pathway was identified as a critical regulator of innate microglial migration, promoting functional recovery after SCI. Conversely, reactive microglia exhibiting heightened Trem2 expression were found to exacerbate neuroinflammatory responses and drive neural cell death.</p><p><strong>Conclusions: </strong>These findings collectively indicate that targeting the dual regulatory axis of Trem2-mediated neuroinflammation and TGFβ-driven repair mechanisms may offer a synergistic therapeutic strategy to enhance functional recovery following spinal cord injury.</p>","PeriodicalId":21976,"journal":{"name":"Spinal cord","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spinal cord","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41393-025-01103-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Study design: An integrated bioinformatics data study.
Objectives: This study uses bioinformatics analysis to map the microglial landscape, investigate key signaling pathways, and reveal the molecular mechanisms that facilitate SCI recovery.
Setting: Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University.
Methods: In this study, we performed an integrative bioinformatics analysis of single-cell RNA sequencing (scRNA-seq), spatial transcriptomic (ST), and bulk RNA-seq datasets from the Gene Expression Omnibus (GEO), utilizing R packages (Seurat, DESeq2, limma, GSVA) and the Enrichr platform.
Results: Single-cell and spatial transcriptomic profiling uncovered dynamic shifts in the microglial landscape post-SCI, characterized by the suppression of innate microglial populations alongside the expansion of reactive microglial subsets. Mechanistically, the TGFβ signaling pathway was identified as a critical regulator of innate microglial migration, promoting functional recovery after SCI. Conversely, reactive microglia exhibiting heightened Trem2 expression were found to exacerbate neuroinflammatory responses and drive neural cell death.
Conclusions: These findings collectively indicate that targeting the dual regulatory axis of Trem2-mediated neuroinflammation and TGFβ-driven repair mechanisms may offer a synergistic therapeutic strategy to enhance functional recovery following spinal cord injury.
期刊介绍:
Spinal Cord is a specialised, international journal that has been publishing spinal cord related manuscripts since 1963. It appears monthly, online and in print, and accepts contributions on spinal cord anatomy, physiology, management of injury and disease, and the quality of life and life circumstances of people with a spinal cord injury. Spinal Cord is multi-disciplinary and publishes contributions across the entire spectrum of research ranging from basic science to applied clinical research. It focuses on high quality original research, systematic reviews and narrative reviews.
Spinal Cord''s sister journal Spinal Cord Series and Cases: Clinical Management in Spinal Cord Disorders publishes high quality case reports, small case series, pilot and retrospective studies perspectives, Pulse survey articles, Point-couterpoint articles, correspondences and book reviews. It specialises in material that addresses all aspects of life for persons with spinal cord injuries or disorders. For more information, please see the aims and scope of Spinal Cord Series and Cases.