Cesar Ulises Monjaras-Avila, Ana Cecilia Luque-Badillo, Nicholas J Carr, Anthony A Papp, Alan I So, Claudia Chavez-Munoz
{"title":"Use of adipose-derived stem cells on decellularized bladder scaffolds for functional bladder mucosa regeneration.","authors":"Cesar Ulises Monjaras-Avila, Ana Cecilia Luque-Badillo, Nicholas J Carr, Anthony A Papp, Alan I So, Claudia Chavez-Munoz","doi":"10.1093/stcltm/szaf033","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the potential for adipocyte-derived stem cells (ASCs) to be used in bladder reconstruction. Current methods, such as enterocystoplasty, have significant limitations, making new approaches necessary. Tissue engineering, specifically using acellular scaffolds such as the bladder acellular matrix, offers a promising basis for this development. For this study, ASCs were isolated from adipose tissue derived from liposuction and co-cultured with urothelial cells (UC; SV-HUC) to induce transdifferentiation. Results indicate successful isolation and characterization of ASCs, displaying positive markers for stem cells. The co-culture of ASCs with SV-HUC cells resulted in changes resembling epithelial cells, indicating a potential transdifferentiation process, and is corroborated by the mRNA and protein levels. For the functional assay, urothelial-like cells were seeded onto decellularized bladder tissues. These findings demonstrate the successful transdifferentiation of ASCs into functional UC, presenting a promising strategy for bladder reconstruction and a potential alternative to current approaches.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 7","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szaf033","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the potential for adipocyte-derived stem cells (ASCs) to be used in bladder reconstruction. Current methods, such as enterocystoplasty, have significant limitations, making new approaches necessary. Tissue engineering, specifically using acellular scaffolds such as the bladder acellular matrix, offers a promising basis for this development. For this study, ASCs were isolated from adipose tissue derived from liposuction and co-cultured with urothelial cells (UC; SV-HUC) to induce transdifferentiation. Results indicate successful isolation and characterization of ASCs, displaying positive markers for stem cells. The co-culture of ASCs with SV-HUC cells resulted in changes resembling epithelial cells, indicating a potential transdifferentiation process, and is corroborated by the mRNA and protein levels. For the functional assay, urothelial-like cells were seeded onto decellularized bladder tissues. These findings demonstrate the successful transdifferentiation of ASCs into functional UC, presenting a promising strategy for bladder reconstruction and a potential alternative to current approaches.
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.