Fast MR signal simulations of microvascular and diffusion contributions using histogram-based approximation and recurrent neural networks.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Thomas Coudert, Maitê Silva Martins Marçal, Aurélien Delphin, Antoine Barrier, Lila Cunge, Loïc Legris, Jan M Warnking, Benjamin Lemasson, Emmanuel L Barbier, Thomas Christen
{"title":"Fast MR signal simulations of microvascular and diffusion contributions using histogram-based approximation and recurrent neural networks.","authors":"Thomas Coudert, Maitê Silva Martins Marçal, Aurélien Delphin, Antoine Barrier, Lila Cunge, Loïc Legris, Jan M Warnking, Benjamin Lemasson, Emmanuel L Barbier, Thomas Christen","doi":"10.1002/mrm.30629","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Accurate MR signal simulation, including microvascular structures and water diffusion, is crucial for MRI techniques like fMRI BOLD modeling and MR vascular Fingerprinting (MRF), which use susceptibility effects on MR signals for tissue characterization. However, integrating microvascular features and diffusion remains computationally challenging, limiting the accuracy of the estimates. Using advanced modeling and deep neural networks, we propose a novel simulation tool that efficiently accounts for susceptibility and diffusion effects.</p><p><strong>Methods: </strong>We used dimension reduction of magnetic field inhomogeneity matrices combined with deep learning methodology to accelerate the simulations while maintaining their accuracy. We validated our results through an in silico study against a reference method and in vivo MRF experiments.</p><p><strong>Results: </strong>This approach accelerates MR signal generation by a factor of almost 13 000 compared to previously used simulation methods while preserving accuracy.</p><p><strong>Conclusion: </strong>The MR-WAVES method allows fast generation of MR signals accounting for microvascular structures and water-diffusion contribution.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30629","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Accurate MR signal simulation, including microvascular structures and water diffusion, is crucial for MRI techniques like fMRI BOLD modeling and MR vascular Fingerprinting (MRF), which use susceptibility effects on MR signals for tissue characterization. However, integrating microvascular features and diffusion remains computationally challenging, limiting the accuracy of the estimates. Using advanced modeling and deep neural networks, we propose a novel simulation tool that efficiently accounts for susceptibility and diffusion effects.

Methods: We used dimension reduction of magnetic field inhomogeneity matrices combined with deep learning methodology to accelerate the simulations while maintaining their accuracy. We validated our results through an in silico study against a reference method and in vivo MRF experiments.

Results: This approach accelerates MR signal generation by a factor of almost 13 000 compared to previously used simulation methods while preserving accuracy.

Conclusion: The MR-WAVES method allows fast generation of MR signals accounting for microvascular structures and water-diffusion contribution.

使用基于直方图的近似和递归神经网络的微血管和扩散贡献的快速MR信号模拟。
目的:准确的MR信号模拟,包括微血管结构和水扩散,对于fMRI BOLD建模和MR血管指纹(MRF)等MRI技术至关重要,这些技术利用MR信号的敏感性效应来进行组织表征。然而,整合微血管特征和扩散在计算上仍然具有挑战性,限制了估计的准确性。利用先进的建模和深度神经网络,我们提出了一种新的模拟工具,可以有效地解释敏感性和扩散效应。方法:采用磁场非均匀性矩阵降维与深度学习相结合的方法,在保持模拟精度的同时加快模拟速度。我们通过参考方法和体内磁共振成像实验验证了我们的结果。结果:与以前使用的模拟方法相比,该方法在保持准确性的同时,将MR信号的生成速度提高了近13000倍。结论:MR- waves方法可以快速生成考虑微血管结构和水扩散贡献的MR信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信