Phenolic compounds and epigenetic mechanisms regulating gene expression: effects on human health.

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Silvia Lorente-Cebrián, André G V Costa, J Andrés Castillo-Rivas, Marta Castro, José Miguel Arbonés-Mainar, Saioa Goñi, Sara Remón, Paula Aranaz, Víctor López, Inmaculada Martín-Burriel, Fermín I Milagro
{"title":"Phenolic compounds and epigenetic mechanisms regulating gene expression: effects on human health.","authors":"Silvia Lorente-Cebrián, André G V Costa, J Andrés Castillo-Rivas, Marta Castro, José Miguel Arbonés-Mainar, Saioa Goñi, Sara Remón, Paula Aranaz, Víctor López, Inmaculada Martín-Burriel, Fermín I Milagro","doi":"10.1007/s13105-025-01105-7","DOIUrl":null,"url":null,"abstract":"<p><p>Phenolic compounds are a large class of phytochemicals with relevant physiological effects that are naturally found in plant-origin foods and derived products. Beneficial effects associated with polyphenol consumption are related to their ability to prevent and/or counteract disease features: they exert anti-inflammatory, antioxidant and anticancer effects, as well as protective actions against metabolic diseases. Phenolic compounds and their metabolites can modulate cell function by regulating gene expression. These effects are partially mediated through specific changes in epigenetic mechanisms such as DNA methylation, histone modifications and microRNA (miRNA) expression. Some polyphenols affect DNA methylation and are effective in counteracting deleterious actions induced by inflammatory/pro-oxidant factors, both in in vitro and in vivo settings. Specific mechanisms include modulation of methyl-transferases, whose levels are inhibited upon polyphenols treatment. Some polyphenols are histone deacetylase inhibitors, which prevent transcriptional repression and suppress tumor and inflammation genes by affecting selective regulation of miRNA expression. Their mostly recognized actions as anti-inflammatory and antioxidants seem to be partially mediated through regulation of individual miRNAs. Due to these actions, polyphenols and polyphenol-derived metabolites are under study in clinical and interventional trials for their benefits on inflammation and/or metabolic disorders. In conclusion, phenolic compounds might be an interesting approach to contribute to human homeostasis given their capacity to dynamically regulate epigenetic factors at cellular and systemic level. The present review aims to study available evidence regarding regulatory effects of polyphenols on gene expression, specifically mediated through epigenetic mechanisms.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-025-01105-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phenolic compounds are a large class of phytochemicals with relevant physiological effects that are naturally found in plant-origin foods and derived products. Beneficial effects associated with polyphenol consumption are related to their ability to prevent and/or counteract disease features: they exert anti-inflammatory, antioxidant and anticancer effects, as well as protective actions against metabolic diseases. Phenolic compounds and their metabolites can modulate cell function by regulating gene expression. These effects are partially mediated through specific changes in epigenetic mechanisms such as DNA methylation, histone modifications and microRNA (miRNA) expression. Some polyphenols affect DNA methylation and are effective in counteracting deleterious actions induced by inflammatory/pro-oxidant factors, both in in vitro and in vivo settings. Specific mechanisms include modulation of methyl-transferases, whose levels are inhibited upon polyphenols treatment. Some polyphenols are histone deacetylase inhibitors, which prevent transcriptional repression and suppress tumor and inflammation genes by affecting selective regulation of miRNA expression. Their mostly recognized actions as anti-inflammatory and antioxidants seem to be partially mediated through regulation of individual miRNAs. Due to these actions, polyphenols and polyphenol-derived metabolites are under study in clinical and interventional trials for their benefits on inflammation and/or metabolic disorders. In conclusion, phenolic compounds might be an interesting approach to contribute to human homeostasis given their capacity to dynamically regulate epigenetic factors at cellular and systemic level. The present review aims to study available evidence regarding regulatory effects of polyphenols on gene expression, specifically mediated through epigenetic mechanisms.

调节基因表达的酚类化合物和表观遗传机制:对人类健康的影响。
酚类化合物是一类具有相关生理作用的植物化学物质,天然存在于植物性食品和衍生产品中。多酚的有益作用与其预防和/或抵消疾病特征的能力有关:它们具有抗炎、抗氧化和抗癌作用,以及对代谢性疾病的保护作用。酚类化合物及其代谢产物可以通过调节基因表达来调节细胞功能。这些影响部分是通过表观遗传机制的特定变化介导的,如DNA甲基化、组蛋白修饰和microRNA (miRNA)表达。在体外和体内环境中,一些多酚会影响DNA甲基化,并有效地抵消炎症/促氧化因子诱导的有害作用。具体机制包括甲基转移酶的调节,其水平在多酚处理后被抑制。一些多酚类物质是组蛋白去乙酰化酶抑制剂,通过影响miRNA表达的选择性调控,阻止转录抑制,抑制肿瘤和炎症基因。它们作为抗炎和抗氧化剂的主要作用似乎部分是通过调节单个mirna介导的。由于这些作用,多酚和多酚衍生代谢物正在临床和介入性试验中研究其对炎症和/或代谢紊乱的益处。综上所述,鉴于酚类化合物在细胞和系统水平上动态调节表观遗传因子的能力,它们可能是一种有助于人体稳态的有趣方法。本综述旨在研究多酚对基因表达的调控作用,特别是通过表观遗传机制介导的调控作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of physiology and biochemistry
Journal of physiology and biochemistry 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信