Stochastic Character Mapping: An Under-Exploited Approach to the Study of Molecular Evolution.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Simon Laurin-Lemay, Nicolas Rodrigue
{"title":"Stochastic Character Mapping: An Under-Exploited Approach to the Study of Molecular Evolution.","authors":"Simon Laurin-Lemay, Nicolas Rodrigue","doi":"10.1007/s00239-025-10257-5","DOIUrl":null,"url":null,"abstract":"<p><p>Methods for the probabilistic mapping of the history of state changes over a phylogeny have been available for the study of molecular evolution for over two decades. In spite of this, such methods have yet to be adopted at large by most molecular evolutionary biologists. Here, we re-emphasize the potential of these stochastic mappings with examples pertaining to the study of the amino acid replacement process. We show how the features targeted by today's top-performing models could have been highlighted in a full phylogenetic context with an amino acid-level Jukes-Cantor model. We also demonstrate how stochastic mappings could be used for detecting CpG hypermutability, a site-dependent feature. We hope for a larger project utilizing mapping-based methods to provide of more fulsome characterization of molecular evolution, and to prioritize and assess modeling efforts. Finally, we draw attention to the options available within the PhyloBayes(-MPI) software for producing mappings under a large set of evolutionary models.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10257-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Methods for the probabilistic mapping of the history of state changes over a phylogeny have been available for the study of molecular evolution for over two decades. In spite of this, such methods have yet to be adopted at large by most molecular evolutionary biologists. Here, we re-emphasize the potential of these stochastic mappings with examples pertaining to the study of the amino acid replacement process. We show how the features targeted by today's top-performing models could have been highlighted in a full phylogenetic context with an amino acid-level Jukes-Cantor model. We also demonstrate how stochastic mappings could be used for detecting CpG hypermutability, a site-dependent feature. We hope for a larger project utilizing mapping-based methods to provide of more fulsome characterization of molecular evolution, and to prioritize and assess modeling efforts. Finally, we draw attention to the options available within the PhyloBayes(-MPI) software for producing mappings under a large set of evolutionary models.

随机特征映射:一种未被充分利用的分子进化研究方法。
在系统发育过程中状态变化历史的概率映射方法已经用于分子进化的研究超过二十年。尽管如此,这些方法还没有被大多数分子进化生物学家广泛采用。在这里,我们再次强调这些随机映射的潜力与实例有关的氨基酸替代过程的研究。我们展示了当今表现最好的模型所针对的特征是如何在一个氨基酸水平的Jukes-Cantor模型的完整系统发育背景下突出显示的。我们还演示了如何使用随机映射来检测CpG超易变性,这是一个位点依赖的特征。我们希望有一个更大的项目,利用基于映射的方法来提供更充分的分子进化特征,并优先考虑和评估建模工作。最后,我们提请注意在PhyloBayes(-MPI)软件中用于在大量进化模型下生成映射的可用选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信