John Q Yap, Azadeh Nikouee, Matthew Kim, Quan Cao, David J Rademacher, Jessie E Lau, Ananya Arora, Leila Y Zou, Yuxiao Sun, Luke Szweda, Hesham Sadek, Sharon Elliot, Benjamin Roos, Marilyn K Glassberg, Hong-Long Ji, Xiang Gao, Qunfeng Dong, Qun Sophia Zang
{"title":"Myocardial pyruvate dehydrogenase kinase 4 drives sex-specific cardiac responses to endotoxemia.","authors":"John Q Yap, Azadeh Nikouee, Matthew Kim, Quan Cao, David J Rademacher, Jessie E Lau, Ananya Arora, Leila Y Zou, Yuxiao Sun, Luke Szweda, Hesham Sadek, Sharon Elliot, Benjamin Roos, Marilyn K Glassberg, Hong-Long Ji, Xiang Gao, Qunfeng Dong, Qun Sophia Zang","doi":"10.1172/jci.insight.191649","DOIUrl":null,"url":null,"abstract":"<p><p>Males often experience worse cardiac outcomes than females in sepsis. This study identified pyruvate dehydrogenase kinase 4 (PDK4) as a key mediator of this disparity. PDK4 regulates glucose utilization by inhibiting pyruvate dehydrogenase (PDH) in mitochondria. In a mouse endotoxemia model, a sublethal dose of lipopolysaccharide (LPS, 5 mg/kg) significantly upregulated myocardial PDK4 and induced cardiac dysfunction in males but not females. Cardiac-specific PDK4 overexpression promoted this cardiac dysfunction in both sexes, whereas PDK4 knockout provided protection. In WT males, LPS reduced PDH activity and fatty acid oxidation (FAO) while increasing lactate levels, suggesting a shift toward glycolysis. These effects were exacerbated by PDK4 overexpression but attenuated by knockout. In females, metabolic changes were minimal, aside from reduced FAO in LPS-challenged females overexpressing PDK4. Additionally, a higher LPS dose (8 mg/kg) triggered cardiac dysfunction in females, accompanied by modest upregulation of PDK4, but without changes in PDH or lactate. Dichloroacetate (DCA), restraining PDK-mediated PDH inhibition, improved cardiac function in males but not females during endotoxemia. PDK4 overexpression also exacerbated cardiac mitochondrial damage, reduced mitophagy, and increased oxidative stress and inflammation during endotoxemia - effects that were prevented by PDK4 knockout. These findings suggest that PDK4 drives sex-specific cardiac responses in sepsis.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 13","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.191649","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Males often experience worse cardiac outcomes than females in sepsis. This study identified pyruvate dehydrogenase kinase 4 (PDK4) as a key mediator of this disparity. PDK4 regulates glucose utilization by inhibiting pyruvate dehydrogenase (PDH) in mitochondria. In a mouse endotoxemia model, a sublethal dose of lipopolysaccharide (LPS, 5 mg/kg) significantly upregulated myocardial PDK4 and induced cardiac dysfunction in males but not females. Cardiac-specific PDK4 overexpression promoted this cardiac dysfunction in both sexes, whereas PDK4 knockout provided protection. In WT males, LPS reduced PDH activity and fatty acid oxidation (FAO) while increasing lactate levels, suggesting a shift toward glycolysis. These effects were exacerbated by PDK4 overexpression but attenuated by knockout. In females, metabolic changes were minimal, aside from reduced FAO in LPS-challenged females overexpressing PDK4. Additionally, a higher LPS dose (8 mg/kg) triggered cardiac dysfunction in females, accompanied by modest upregulation of PDK4, but without changes in PDH or lactate. Dichloroacetate (DCA), restraining PDK-mediated PDH inhibition, improved cardiac function in males but not females during endotoxemia. PDK4 overexpression also exacerbated cardiac mitochondrial damage, reduced mitophagy, and increased oxidative stress and inflammation during endotoxemia - effects that were prevented by PDK4 knockout. These findings suggest that PDK4 drives sex-specific cardiac responses in sepsis.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.