Philip K Farahat, Chino Kumagai-Cresse, Raquel L Aragón, Feiyang Ma, Justin K Amakor, Alejandro Espinoza, Irina Kramerova, Robert J Jimenez, Bradley M Smith, Jesus Perez, Rachelle H Crosbie, Apoorva H Nagendra, Jackie McCourt-Towner, Gerald Coulis, Oluwatayo F Ikotun, April D Pyle, Matteo Pellegrini, Elizabeth M McNally, S Armando Villalta, Melissa J Spencer
{"title":"Macrophage-derived Spp1 promotes intramuscular fat in dystrophic muscle.","authors":"Philip K Farahat, Chino Kumagai-Cresse, Raquel L Aragón, Feiyang Ma, Justin K Amakor, Alejandro Espinoza, Irina Kramerova, Robert J Jimenez, Bradley M Smith, Jesus Perez, Rachelle H Crosbie, Apoorva H Nagendra, Jackie McCourt-Towner, Gerald Coulis, Oluwatayo F Ikotun, April D Pyle, Matteo Pellegrini, Elizabeth M McNally, S Armando Villalta, Melissa J Spencer","doi":"10.1172/jci.insight.181946","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder involving cycles of muscle degeneration and regeneration, leading to accumulation of intramuscular fibrosis and fat. Ablation of Osteopontin/Spp1 in a murine model of DMD (mdx) improves the dystrophic phenotype, but the source of Spp1 and its impact on target cells in dystrophic muscles remain unknown. In dystrophic muscles, macrophages are the predominate infiltrating leukocyte and express high levels of Spp1. We used macrophage-specific ablation combined with single-cell transcriptional profiling to uncover the impact of macrophage-derived Spp1 on cell-cell interactions in mdx muscles. Ablation of macrophage-specific Spp1 (cKO) correlated with reduction of 2 PDGFRa+ stromal cell populations, expressing Lifr+ and Procr+. Sorting and transcriptional profiling of these populations confirmed that they are enriched in adipogenesis genes and are highly related to fibroadipogenic precursors (FAPS). These adipogenic stromal cells (ASC) displayed more adipogenic potential in vitro compared with FAPS, likely due to a more differentiated state. Reduction of ASCs correlated with reduced intramuscular diaphragmatic fat and improved diaphragm function. These data suggest a role for myeloid-derived Spp1 in the differentiation of stromal cells towards an adipogenic fate, leading to accumulation of intramuscular fat in dystrophic muscles.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 13","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.181946","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder involving cycles of muscle degeneration and regeneration, leading to accumulation of intramuscular fibrosis and fat. Ablation of Osteopontin/Spp1 in a murine model of DMD (mdx) improves the dystrophic phenotype, but the source of Spp1 and its impact on target cells in dystrophic muscles remain unknown. In dystrophic muscles, macrophages are the predominate infiltrating leukocyte and express high levels of Spp1. We used macrophage-specific ablation combined with single-cell transcriptional profiling to uncover the impact of macrophage-derived Spp1 on cell-cell interactions in mdx muscles. Ablation of macrophage-specific Spp1 (cKO) correlated with reduction of 2 PDGFRa+ stromal cell populations, expressing Lifr+ and Procr+. Sorting and transcriptional profiling of these populations confirmed that they are enriched in adipogenesis genes and are highly related to fibroadipogenic precursors (FAPS). These adipogenic stromal cells (ASC) displayed more adipogenic potential in vitro compared with FAPS, likely due to a more differentiated state. Reduction of ASCs correlated with reduced intramuscular diaphragmatic fat and improved diaphragm function. These data suggest a role for myeloid-derived Spp1 in the differentiation of stromal cells towards an adipogenic fate, leading to accumulation of intramuscular fat in dystrophic muscles.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.