Lucas F Loffredo, Katherine A Kaiser, Adam Kornberg, Samhita Rao, Kenia de Los Santos-Alexis, Arnold Han, Nicholas Arpaia
{"title":"An amphiregulin reporter mouse enables transcriptional and clonal expansion analysis of reparative lung Tregs.","authors":"Lucas F Loffredo, Katherine A Kaiser, Adam Kornberg, Samhita Rao, Kenia de Los Santos-Alexis, Arnold Han, Nicholas Arpaia","doi":"10.1172/jci.insight.187245","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory T cells (Tregs) are known to play critical roles in tissue repair via provision of growth factors, such as amphiregulin (Areg). Areg-producing Tregs have previously been difficult to study because of an inability to isolate live Areg-producing cells. In this report, we created a reporter mouse to detect Areg expression in live cells (AregThy1.1). We employed influenza A and bleomycin models of lung damage to sort Areg-producing and non-Areg-producing Tregs for transcriptomic analyses. Single-cell RNA-Seq revealed distinct subpopulations of Tregs and allowed transcriptomic comparisons of damage-induced populations. Single-cell TCR sequencing showed that Treg clonal expansion was biased toward Areg-producing Tregs and largely occurred within damage-induced subgroups. Gene module analysis revealed functional divergence of Tregs into immunosuppression-oriented and tissue repair-oriented groups, leading to identification of candidate receptors for induction of repair activity in Tregs. We tested these using an ex vivo assay for Treg-mediated tissue repair, identifying 4-1BB agonism as a mechanism for reparative activity induction. Overall, we demonstrate that the AregThy1.1 mouse is a promising tool for investigating tissue repair activity in leukocytes.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 13","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.187245","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Regulatory T cells (Tregs) are known to play critical roles in tissue repair via provision of growth factors, such as amphiregulin (Areg). Areg-producing Tregs have previously been difficult to study because of an inability to isolate live Areg-producing cells. In this report, we created a reporter mouse to detect Areg expression in live cells (AregThy1.1). We employed influenza A and bleomycin models of lung damage to sort Areg-producing and non-Areg-producing Tregs for transcriptomic analyses. Single-cell RNA-Seq revealed distinct subpopulations of Tregs and allowed transcriptomic comparisons of damage-induced populations. Single-cell TCR sequencing showed that Treg clonal expansion was biased toward Areg-producing Tregs and largely occurred within damage-induced subgroups. Gene module analysis revealed functional divergence of Tregs into immunosuppression-oriented and tissue repair-oriented groups, leading to identification of candidate receptors for induction of repair activity in Tregs. We tested these using an ex vivo assay for Treg-mediated tissue repair, identifying 4-1BB agonism as a mechanism for reparative activity induction. Overall, we demonstrate that the AregThy1.1 mouse is a promising tool for investigating tissue repair activity in leukocytes.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.