{"title":"A python-based novel vertex-edge-weighted modeling framework for enhanced QSPR analysis of cardiovascular and diabetes drug molecules.","authors":"Sezer Sorgun, Asad Ullah","doi":"10.1140/epje/s10189-025-00500-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study advances the quantitative structure-property relationship analysis by leveraging novel vertex-edge-weighted (VEW) molecular graphs to investigate 19 drug molecules commonly used to treat cardiovascular diseases and diabetes. The graphs are constructed by assigning weights to vertices and edges based on atomic properties, enabling a detailed and chemically meaningful representation of molecular structures. Python-based programs were developed to compute degree-based topological indices, which were then analyzed through robust linear regression models to uncover correlations with key physicochemical properties. The results reveal strong and consistent relationships between the computed indices and the physicochemical properties, validating the predictive capability of the proposed approach. Notably, the VEW model demonstrates significant improvements in accuracy and correlation strength over traditional unweighted molecular graph models, underscoring its enhanced ability to capture intricate molecular interactions. This work provides novel insights into the utility of degree-based topological indices in drug design, particularly for cardiovascular and diabetic treatments. By bridging theoretical modeling with practical pharmaceutical applications, it lays a solid foundation for optimizing molecular properties, improving drug efficacy, and accelerating the drug development pipeline. These findings reaffirm the growing significance of computational strategies in advancing precision medicine and pharmaceutical innovation.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 6-7","pages":"36"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1140/epje/s10189-025-00500-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study advances the quantitative structure-property relationship analysis by leveraging novel vertex-edge-weighted (VEW) molecular graphs to investigate 19 drug molecules commonly used to treat cardiovascular diseases and diabetes. The graphs are constructed by assigning weights to vertices and edges based on atomic properties, enabling a detailed and chemically meaningful representation of molecular structures. Python-based programs were developed to compute degree-based topological indices, which were then analyzed through robust linear regression models to uncover correlations with key physicochemical properties. The results reveal strong and consistent relationships between the computed indices and the physicochemical properties, validating the predictive capability of the proposed approach. Notably, the VEW model demonstrates significant improvements in accuracy and correlation strength over traditional unweighted molecular graph models, underscoring its enhanced ability to capture intricate molecular interactions. This work provides novel insights into the utility of degree-based topological indices in drug design, particularly for cardiovascular and diabetic treatments. By bridging theoretical modeling with practical pharmaceutical applications, it lays a solid foundation for optimizing molecular properties, improving drug efficacy, and accelerating the drug development pipeline. These findings reaffirm the growing significance of computational strategies in advancing precision medicine and pharmaceutical innovation.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.