{"title":"Spacetime Wavelet Method for the Solution of Nonlinear Partial Differential Equations","authors":"Cody D. Cochran, Karel Matouš","doi":"10.1002/nme.70076","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We propose a high-order spacetime wavelet method for the solution of nonlinear partial differential equations with a user-prescribed accuracy. The technique utilizes wavelet theory with a priori error estimates to discretize the problem in both the spatial and temporal dimensions simultaneously. We also propose a novel wavelet-based recursive algorithm to reduce the system sensitivity stemming from steep initial and/or boundary conditions. The resulting nonlinear equations are solved using the Newton–Raphson method. We parallelize the construction of the tangent operator along with the solution of the system of algebraic equations. We perform rigorous verification studies using the nonlinear Burgers' equation. The application of the method is demonstrated by solving the Sod shock tube problem using the Navier–Stokes equations. The numerical results of the method reveal high-order convergence rates for the function as well as its spatial and temporal derivatives. We solve multiscale problems with steep gradients in both the spatial and temporal directions with a priori error estimates.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 13","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70076","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a high-order spacetime wavelet method for the solution of nonlinear partial differential equations with a user-prescribed accuracy. The technique utilizes wavelet theory with a priori error estimates to discretize the problem in both the spatial and temporal dimensions simultaneously. We also propose a novel wavelet-based recursive algorithm to reduce the system sensitivity stemming from steep initial and/or boundary conditions. The resulting nonlinear equations are solved using the Newton–Raphson method. We parallelize the construction of the tangent operator along with the solution of the system of algebraic equations. We perform rigorous verification studies using the nonlinear Burgers' equation. The application of the method is demonstrated by solving the Sod shock tube problem using the Navier–Stokes equations. The numerical results of the method reveal high-order convergence rates for the function as well as its spatial and temporal derivatives. We solve multiscale problems with steep gradients in both the spatial and temporal directions with a priori error estimates.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.