Variation of Mesosphere Ozone and Related Constituents During Solar Eclipse on 21 June 2020 Based on WACCM-X Simulations

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Mingming Zhan, Jingyuan Li, Jianyong Lu, Shuai Fu, Haiwen Yao, Ningtao Huang, Meng Sun, Guanchun Wei, Shiping Xiong, Ming Wang, Zheng Li, Hua Zhang, Xinhao Chen
{"title":"Variation of Mesosphere Ozone and Related Constituents During Solar Eclipse on 21 June 2020 Based on WACCM-X Simulations","authors":"Mingming Zhan,&nbsp;Jingyuan Li,&nbsp;Jianyong Lu,&nbsp;Shuai Fu,&nbsp;Haiwen Yao,&nbsp;Ningtao Huang,&nbsp;Meng Sun,&nbsp;Guanchun Wei,&nbsp;Shiping Xiong,&nbsp;Ming Wang,&nbsp;Zheng Li,&nbsp;Hua Zhang,&nbsp;Xinhao Chen","doi":"10.1029/2024JA033534","DOIUrl":null,"url":null,"abstract":"<p>The Whole Atmosphere Climate Community Model is utilized to simulate the complete process of variation in ozone and related constituent concentrations within the height range of 47–79 km (1–0.01 hPa) in the mesosphere during the annular solar eclipse on 21 June 2020. The simulated ozone vertical profile closely matches the Microwave Limb Sounder observation. Simulation results show that the largest average ozone concentration increase occurs at 66 km (0.07547 hPa), reaching 18.4%. Ozone concentration at this altitude increases by 96.0% after the eclipse obscuration reaches its maximum. The ozone increased region closely follows the trajectory of the eclipse obscuration, although its spatial extent is slightly smaller. Only regions experiencing more than 30% solar obscuration exhibited ozone increases exceeding 10%. This study quantitatively analyzes the relative contributions of different factors to ozone variations during the solar eclipse. Ozone variations are primarily driven using chemical processes rather than dynamic transport. The key chemical pathways involve ozone production through the three-body recombination (<span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>+</mo>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mo>+</mo>\n <mi>M</mi>\n <mo>=</mo>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n <mo>+</mo>\n <mi>M</mi>\n </mrow>\n <annotation> $\\mathrm{O}+{\\mathrm{O}}_{2}+\\mathrm{M}={\\mathrm{O}}_{3}+\\mathrm{M}$</annotation>\n </semantics></math>), ozone photolysis, and the H-ozone reaction. Reduced solar radiation suppresses photolysis more effectively than it limits ozone production, resulting in a net increase in O<sub>3</sub> concentration. Meanwhile, the decreased production of H further weakens the destruction of ozone. Single-point analysis reveals that at the eclipse central location, the change in the ozone variation rate from the three-body recombination and photolysis accounts for 75.2% of the O<sub>3</sub> chemical variation rate change collectively. The H-ozone reaction accounts for 24.7% of the ozone chemical variation.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033534","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Whole Atmosphere Climate Community Model is utilized to simulate the complete process of variation in ozone and related constituent concentrations within the height range of 47–79 km (1–0.01 hPa) in the mesosphere during the annular solar eclipse on 21 June 2020. The simulated ozone vertical profile closely matches the Microwave Limb Sounder observation. Simulation results show that the largest average ozone concentration increase occurs at 66 km (0.07547 hPa), reaching 18.4%. Ozone concentration at this altitude increases by 96.0% after the eclipse obscuration reaches its maximum. The ozone increased region closely follows the trajectory of the eclipse obscuration, although its spatial extent is slightly smaller. Only regions experiencing more than 30% solar obscuration exhibited ozone increases exceeding 10%. This study quantitatively analyzes the relative contributions of different factors to ozone variations during the solar eclipse. Ozone variations are primarily driven using chemical processes rather than dynamic transport. The key chemical pathways involve ozone production through the three-body recombination ( O + O 2 + M = O 3 + M $\mathrm{O}+{\mathrm{O}}_{2}+\mathrm{M}={\mathrm{O}}_{3}+\mathrm{M}$ ), ozone photolysis, and the H-ozone reaction. Reduced solar radiation suppresses photolysis more effectively than it limits ozone production, resulting in a net increase in O3 concentration. Meanwhile, the decreased production of H further weakens the destruction of ozone. Single-point analysis reveals that at the eclipse central location, the change in the ozone variation rate from the three-body recombination and photolysis accounts for 75.2% of the O3 chemical variation rate change collectively. The H-ozone reaction accounts for 24.7% of the ozone chemical variation.

基于WACCM-X模拟的2020年6月21日日食期间中间层臭氧及相关成分变化
利用全大气气候群落模式模拟了2020年6月21日日环食期间中间层47 ~ 79 km (1 ~ 0.01 hPa)高度范围内臭氧及相关成分浓度变化的完整过程。模拟的臭氧垂直剖面与微波边缘测深仪的观测结果吻合较好。模拟结果表明,在66 km (0.07547 hPa)处臭氧平均浓度增幅最大,达到18.4%。该高度的臭氧浓度在日食遮蔽达到最大值后增加了96.0%。臭氧增加的区域与日食遮蔽的轨迹密切相关,尽管其空间范围略小。只有太阳遮挡超过30%的地区臭氧增加超过10%。本研究定量分析了不同因子对日蚀期间臭氧变化的相对贡献。臭氧变化主要是由化学过程而不是动态传输驱动的。关键的化学途径包括通过三体重组(O + o2 + M = O 3 + M)产生臭氧$\mathrm{O}+{\mathrm{O}}_{2}+\mathrm{M}={\mathrm{O}}_{3}+\mathrm{M}$),臭氧光解和h -臭氧反应。减少的太阳辐射抑制光解作用比限制臭氧产生更有效,导致臭氧浓度净增加。同时,H的减少进一步削弱了对臭氧的破坏。单点分析表明,在日食中心位置,三体重组和光解引起的臭氧变化率变化占O3化学变化率变化的75.2%。h -臭氧反应占臭氧化学变化的24.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信