Longitudinal Variations in the Ionospheric Disturbances: Insights From the May 2024 Super Storm

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Usman Ahmad, Waqar Younas, Majid Khan, M. M. Abbasi
{"title":"Longitudinal Variations in the Ionospheric Disturbances: Insights From the May 2024 Super Storm","authors":"Usman Ahmad,&nbsp;Waqar Younas,&nbsp;Majid Khan,&nbsp;M. M. Abbasi","doi":"10.1029/2025JA033981","DOIUrl":null,"url":null,"abstract":"<p>We present an analysis of the super storm event that occurred on 10–11 May, 2024, focusing on ionospheric and magnetic signatures across different longitudinal sectors using space-borne and ground-based data. On 10 May, a strong positive ionospheric storm was observed in the southern hemisphere (winter), while northern hemisphere (summer) experienced negative storm effects. The most pronounced positive storm effects emerged in the American-Pacific sector during local evening hours, followed by Asia and Africa on 11 May. A significant drop in the <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $O/{N}_{2}$</annotation>\n </semantics></math> ratio was observed in the northern hemisphere, which likely contributed to the negative ionospheric storm. This depletion appears to be driven by strong thermospheric winds induced by the increase auroral electrojet currents, as indicated by the SME index. The SWARM satellite data revealed numerous plasma bubbles, predominantly at equatorial ionization anomaly (EIA) crests, with some extending up to <span></span><math>\n <semantics>\n <mrow>\n <mn>40</mn>\n <mo>°</mo>\n </mrow>\n <annotation> $40{}^{\\circ}$</annotation>\n </semantics></math> latitude. Our analysis suggests that equatorial plasma bubbles (EPBs) following the initial phase of the storm were enhanced by prompt penetration electric fields (PPEFs) and strong electrojet currents, while those in recovery phase were primarily driven by disturbance dynamo electric fields (DDEFs). Additionally, in the America and Africa regions, the magnitude of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n <mi>dyn</mi>\n </msub>\n </mrow>\n <annotation> ${D}_{\\mathit{dyn}}$</annotation>\n </semantics></math> was higher than in the Asia and Pacific sectors, indicating strong neutral winds that contribute to the decrease in <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $O/{N}_{2}$</annotation>\n </semantics></math> ratio. Conversely, <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <msub>\n <mi>P</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $D{P}_{2}$</annotation>\n </semantics></math> exhibited an inverse relation with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n <mi>dyn</mi>\n </msub>\n </mrow>\n <annotation> ${D}_{\\mathit{dyn}}$</annotation>\n </semantics></math>, reflecting enhanced solar wind-magnetosphere coupling. This highlights the asymmetric response of different longitudinal regions during this super storm.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA033981","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present an analysis of the super storm event that occurred on 10–11 May, 2024, focusing on ionospheric and magnetic signatures across different longitudinal sectors using space-borne and ground-based data. On 10 May, a strong positive ionospheric storm was observed in the southern hemisphere (winter), while northern hemisphere (summer) experienced negative storm effects. The most pronounced positive storm effects emerged in the American-Pacific sector during local evening hours, followed by Asia and Africa on 11 May. A significant drop in the O / N 2 $O/{N}_{2}$ ratio was observed in the northern hemisphere, which likely contributed to the negative ionospheric storm. This depletion appears to be driven by strong thermospheric winds induced by the increase auroral electrojet currents, as indicated by the SME index. The SWARM satellite data revealed numerous plasma bubbles, predominantly at equatorial ionization anomaly (EIA) crests, with some extending up to 40 ° $40{}^{\circ}$ latitude. Our analysis suggests that equatorial plasma bubbles (EPBs) following the initial phase of the storm were enhanced by prompt penetration electric fields (PPEFs) and strong electrojet currents, while those in recovery phase were primarily driven by disturbance dynamo electric fields (DDEFs). Additionally, in the America and Africa regions, the magnitude of D dyn ${D}_{\mathit{dyn}}$ was higher than in the Asia and Pacific sectors, indicating strong neutral winds that contribute to the decrease in O / N 2 $O/{N}_{2}$ ratio. Conversely, D P 2 $D{P}_{2}$ exhibited an inverse relation with D dyn ${D}_{\mathit{dyn}}$ , reflecting enhanced solar wind-magnetosphere coupling. This highlights the asymmetric response of different longitudinal regions during this super storm.

电离层扰动的纵向变化:来自2024年5月超级风暴的见解
本文对发生在2024年5月10日至11日的超级风暴事件进行了分析,重点分析了电离层和不同纵向扇区的磁特征,使用了星载和地面数据。5月10日,南半球(冬季)观测到强烈的正电离层风暴,而北半球(夏季)则经历了负风暴影响。最明显的正面风暴影响出现在美国-太平洋地区,其后是5月11日的亚洲和非洲。在北半球观测到O/ N 2 $O/{N}_{2}$比值显著下降,这可能是负电离层风暴的原因之一。正如SME指数所显示的那样,这种损耗似乎是由极光电喷流增加引起的强热层风所驱动的。SWARM卫星数据显示了大量的等离子体气泡,主要位于赤道电离异常(EIA)波峰,其中一些延伸到40°$40{}^{\circ}$纬度。分析表明,风暴初始阶段后赤道等离子体气泡(EPBs)主要受到快速穿透电场(ppfs)和强电射流的增强,而恢复阶段的等离子体气泡主要受到扰动发电机电场(DDEFs)的驱动。此外,在美洲和非洲区域,ddyn ${\mathit{dyn}}$的幅度高于亚洲和太平洋区域。表明强中性风导致O/ N 2 $O/{N}_{2}$比值减小。相反,pd2 $D{P}_{2}$与D dyn ${D}_{\mathit{dyn}}$呈反比关系,反映了太阳风-磁层耦合增强。这凸显了这次超级风暴期间不同纵向区域的不对称响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信