Probing the Compositional and Structural Effects on the Electrochemical Performance of Na(Mn-Fe-Ni)O2 Cathodes in Sodium-Ion Batteries

Battery Energy Pub Date : 2025-07-08 DOI:10.1002/bte2.70018
Samriddhi Saxena, Hari Narayanan Vasavan, Neha Dagar, Karthik Chinnathambi, Velaga Srihari, Asish Kumar Das, Pratiksha Gami, Sonia Deswal, Pradeep Kumar, Himanshu Kumar Poswal, Sunil Kumar
{"title":"Probing the Compositional and Structural Effects on the Electrochemical Performance of Na(Mn-Fe-Ni)O2 Cathodes in Sodium-Ion Batteries","authors":"Samriddhi Saxena,&nbsp;Hari Narayanan Vasavan,&nbsp;Neha Dagar,&nbsp;Karthik Chinnathambi,&nbsp;Velaga Srihari,&nbsp;Asish Kumar Das,&nbsp;Pratiksha Gami,&nbsp;Sonia Deswal,&nbsp;Pradeep Kumar,&nbsp;Himanshu Kumar Poswal,&nbsp;Sunil Kumar","doi":"10.1002/bte2.70018","DOIUrl":null,"url":null,"abstract":"<p>This study systematically investigates an Mn-Fe-Ni pseudo-ternary system for Na(Mn-Fe-Ni)O<sub>2</sub> cathodes, focusing on the effects of varying transition metal fractions on structural and electrochemical properties. X-ray diffraction reveals that increasing Mn content induces biphasic behavior. A higher Ni content reduces the c parameter, while higher Mn and Fe concentrations expand the lattice. Average particle size increases with an increase in Mn content and Fe/Ni ratio. NaMn<sub>0.500</sub>Fe<sub>0.125</sub>Ni<sub>0.375</sub>O<sub>2</sub> delivers a high specific capacity of ~149 mAh g⁻¹ in the 2.0–4.0 V range. Galvanostatic charge-discharge and <i>dQ/dV</i> versus V curves suggest that a Ni/Fe ratio &gt; 1 enhances specific capacity and lowers voltage polarization in the materials. NaMn<sub>0.500</sub>Fe<sub>0.250</sub>Ni<sub>0.250</sub>O<sub>2</sub> demonstrated the best rate performance, exhibiting 85.7% capacity at 1C and 69.7% at 3C, compared to 0.1C, while biphasic NaMn<sub>0.625</sub>Fe<sub>0.125</sub>Ni<sub>0.250</sub>O<sub>2</sub> (MFN-512) excelled in cyclic stability, retaining 93% of capacity after 100 cycles. The performance of MFN-512 in a full cell configuration was studied with hard carbon as the anode, resulting in a specific capacity of ~92 mAh g<sup>−1</sup> and a nominal voltage of ~2.9 V at a 0.1C rate, demonstrating its potential in practical applications. Transmission electron microscopy confirmed the biphasic nature of MFN-512, with columnar growth of P2 and O3 phases. Electrochemical impedance spectroscopy revealed that better-performing samples have lower charge transfer resistance. <i>Operando</i> Synchrotron XRD reveals reversible phase transformations in MFN-512, driven by its optimized transition metal ratios and phase fraction. This work outlines a systematic approach to optimizing low-cost, high-performance Mn-Fe-Ni layered oxides.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.70018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates an Mn-Fe-Ni pseudo-ternary system for Na(Mn-Fe-Ni)O2 cathodes, focusing on the effects of varying transition metal fractions on structural and electrochemical properties. X-ray diffraction reveals that increasing Mn content induces biphasic behavior. A higher Ni content reduces the c parameter, while higher Mn and Fe concentrations expand the lattice. Average particle size increases with an increase in Mn content and Fe/Ni ratio. NaMn0.500Fe0.125Ni0.375O2 delivers a high specific capacity of ~149 mAh g⁻¹ in the 2.0–4.0 V range. Galvanostatic charge-discharge and dQ/dV versus V curves suggest that a Ni/Fe ratio > 1 enhances specific capacity and lowers voltage polarization in the materials. NaMn0.500Fe0.250Ni0.250O2 demonstrated the best rate performance, exhibiting 85.7% capacity at 1C and 69.7% at 3C, compared to 0.1C, while biphasic NaMn0.625Fe0.125Ni0.250O2 (MFN-512) excelled in cyclic stability, retaining 93% of capacity after 100 cycles. The performance of MFN-512 in a full cell configuration was studied with hard carbon as the anode, resulting in a specific capacity of ~92 mAh g−1 and a nominal voltage of ~2.9 V at a 0.1C rate, demonstrating its potential in practical applications. Transmission electron microscopy confirmed the biphasic nature of MFN-512, with columnar growth of P2 and O3 phases. Electrochemical impedance spectroscopy revealed that better-performing samples have lower charge transfer resistance. Operando Synchrotron XRD reveals reversible phase transformations in MFN-512, driven by its optimized transition metal ratios and phase fraction. This work outlines a systematic approach to optimizing low-cost, high-performance Mn-Fe-Ni layered oxides.

Abstract Image

钠离子电池中Na(Mn-Fe-Ni)O2阴极的组成和结构对电化学性能的影响
本研究系统地研究了Na(Mn-Fe-Ni)O2阴极的Mn-Fe-Ni伪三元体系,重点研究了不同过渡金属组分对结构和电化学性能的影响。x射线衍射表明,Mn含量的增加诱导了双相行为。较高的Ni含量降低了c参数,而较高的Mn和Fe浓度则扩大了晶格。平均粒径随Mn含量和Fe/Ni比的增加而增大。在2.0-4.0 V范围内,namn0.500 fe0.125 ni0.3750 o2的比容量高达~149 mAh g⁻¹。恒流充放电和dQ/dV / V曲线表明,当Ni/Fe比为1时,材料的比容量增大,电压极化降低。NaMn0.500Fe0.250Ni0.250O2表现出最好的倍率性能,在1C和3C下的倍率分别为85.7%和69.7%,而双相NaMn0.625Fe0.125Ni0.250O2 (MFN-512)在循环稳定性方面表现优异,循环100次后仍保持93%的倍率。以硬碳为阳极,研究了MFN-512在全电池结构下的性能,在0.1C倍率下的比容量为~92 mAh g−1,标称电压为~2.9 V,证明了其实际应用潜力。透射电镜证实了MFN-512的双相性质,P2和O3相呈柱状生长。电化学阻抗谱分析表明,性能较好的样品具有较低的电荷转移电阻。Operando同步加速器XRD显示,在优化的过渡金属比和相分数的驱动下,MFN-512发生了可逆的相变。本研究概述了一种优化低成本、高性能Mn-Fe-Ni层状氧化物的系统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信