AI-Driven Battery-Free Wireless Sensing of Hazardous Liquid Spills via a Frequency-Selective Surface in a Monostatic Antenna Configuration

IF 3.4 0 ENGINEERING, ELECTRICAL & ELECTRONIC
Pau Casacuberta;Fatemeh Niknahad;Ali Maleki Gargari;Ferran Martín;Mohammad H. Zarifi
{"title":"AI-Driven Battery-Free Wireless Sensing of Hazardous Liquid Spills via a Frequency-Selective Surface in a Monostatic Antenna Configuration","authors":"Pau Casacuberta;Fatemeh Niknahad;Ali Maleki Gargari;Ferran Martín;Mohammad H. Zarifi","doi":"10.1109/LMWT.2025.3556170","DOIUrl":null,"url":null,"abstract":"The detection of spills is paramount in safeguarding safety and mitigating environmental risks in sensitive environments, including laboratories and industrial facilities. Here, the novel artificial intelligence (AI)-driven, battery-free, and wireless sensing methodology are presented for detecting liquid spills using a monostatic wireless sensing system. The system consists of a frequency-selective surface (FSS) serving as the sensor, in conjunction with a horn antenna that functions as the readout equipment. The sensing structure features a <inline-formula> <tex-math>$25 \\times 25$ </tex-math></inline-formula> resonator array with a 7-mm periodicity, operating at a resonant frequency of 7.2 GHz. The system analyzes the renormalized <inline-formula> <tex-math>$S_{11}$ </tex-math></inline-formula> response to quantify variations caused by the presence of liquid on the FSS, demonstrating a high sensitivity to isopropyl alcohol (IPA) spills. Using machine learning techniques, the framework generates <inline-formula> <tex-math>$512 \\times 512$ </tex-math></inline-formula> pixel masks delineating the affected area on the FSS, achieving an <inline-formula> <tex-math>${F}1$ </tex-math></inline-formula>-score exceeding 0.85 for spill localization. This sensing methodology shows potential for integration with augmented reality (AR) systems, enabling enhanced situational awareness and real-time spill localization. Future work aims to enhance the system’s capability to detect more hazardous materials and accurately classify them.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 7","pages":"1093-1096"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10969564","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10969564/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of spills is paramount in safeguarding safety and mitigating environmental risks in sensitive environments, including laboratories and industrial facilities. Here, the novel artificial intelligence (AI)-driven, battery-free, and wireless sensing methodology are presented for detecting liquid spills using a monostatic wireless sensing system. The system consists of a frequency-selective surface (FSS) serving as the sensor, in conjunction with a horn antenna that functions as the readout equipment. The sensing structure features a $25 \times 25$ resonator array with a 7-mm periodicity, operating at a resonant frequency of 7.2 GHz. The system analyzes the renormalized $S_{11}$ response to quantify variations caused by the presence of liquid on the FSS, demonstrating a high sensitivity to isopropyl alcohol (IPA) spills. Using machine learning techniques, the framework generates $512 \times 512$ pixel masks delineating the affected area on the FSS, achieving an ${F}1$ -score exceeding 0.85 for spill localization. This sensing methodology shows potential for integration with augmented reality (AR) systems, enabling enhanced situational awareness and real-time spill localization. Future work aims to enhance the system’s capability to detect more hazardous materials and accurately classify them.
人工智能驱动的无电池无线传感有害液体泄漏通过频率选择表面在单天线配置
在包括实验室和工业设施在内的敏感环境中,检测泄漏对于保障安全和减轻环境风险至关重要。本文提出了一种新的人工智能(AI)驱动、无电池和无线传感方法,用于使用单稳态无线传感系统检测液体泄漏。该系统由作为传感器的频率选择表面(FSS)和作为读出设备的喇叭天线组成。该传感结构采用$25 \ × 25$谐振器阵列,周期为7mm,谐振频率为7.2 GHz。该系统分析重整后的$S_{11}$响应,以量化FSS上存在液体引起的变化,显示出对异丙醇(IPA)泄漏的高灵敏度。使用机器学习技术,该框架生成$512 \ × 512$像素掩码,描绘FSS上的受影响区域,实现溢油定位的${F}1$ -得分超过0.85。这种传感方法显示了与增强现实(AR)系统集成的潜力,可以增强态势感知和实时泄漏定位。未来的工作旨在提高该系统检测更多有害物质并对其进行准确分类的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信