Zhenghua Wei;Qiang Liu;Guangxing Du;Guolin Li;Wang Liu
{"title":"Design of a High-Efficiency Extended Continuous-Mode Inverse Class-GF Power Amplifier With Enhanced Bandwidth","authors":"Zhenghua Wei;Qiang Liu;Guangxing Du;Guolin Li;Wang Liu","doi":"10.1109/LMWT.2025.3559999","DOIUrl":null,"url":null,"abstract":"This letter provides an extended continuous-mode inverse class-GF (ECCGF<sup>−1</sup>) concise theory for the design of a high-efficiency power amplifier (PA) with enhanced bandwidth. Compared with the typical continuous-mode inverse class-GF (CCGF<sup>−1</sup>), a broader design space considering input nonlinearity is explored by simplified formulas based on the harmonic components of the drain current in class-GF<sup>−1</sup>. Moreover, the problem of current overshoot can be alleviated in ECCGF<sup>−1</sup>. For verification, a prototype is designed and fabricated by using a 10-W GaN HEMT device. The measured results show that the output power of 39.8–42.2 dBm, drain efficiency (DE) of 61%–78.6%, and gain of 9.8–12.2 dB are achieved over the relative bandwidth (RBW) of 136.8% from 0.6 to 3.2 GHz. In contrast with the other types of PA, the design exhibits a wider bandwidth and comparable efficiency.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 7","pages":"1041-1044"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10980162/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter provides an extended continuous-mode inverse class-GF (ECCGF−1) concise theory for the design of a high-efficiency power amplifier (PA) with enhanced bandwidth. Compared with the typical continuous-mode inverse class-GF (CCGF−1), a broader design space considering input nonlinearity is explored by simplified formulas based on the harmonic components of the drain current in class-GF−1. Moreover, the problem of current overshoot can be alleviated in ECCGF−1. For verification, a prototype is designed and fabricated by using a 10-W GaN HEMT device. The measured results show that the output power of 39.8–42.2 dBm, drain efficiency (DE) of 61%–78.6%, and gain of 9.8–12.2 dB are achieved over the relative bandwidth (RBW) of 136.8% from 0.6 to 3.2 GHz. In contrast with the other types of PA, the design exhibits a wider bandwidth and comparable efficiency.