{"title":"Development of a methodology for identifying and quantifying mining environmental liabilities in aquatic ecosystems: A case study of Segovia, Colombia","authors":"Wilfredo Marimon-Bolívar , John Chavarro Diaz , Armando Sarmiento , Nathalie Toussaint Jimenez","doi":"10.1016/j.wri.2025.100307","DOIUrl":null,"url":null,"abstract":"<div><div>Untreated discharges from mining activities threaten aquatic ecosystems, affecting water quality and biodiversity. This study develops a methodology for estimating environmental liabilities in aquatic systems, focusing on Segovia, Colombia (2010–2017). Using historical data (2010–2017), recent monitoring (2021–2023), and modelling tools (HEC-RAS and WASP), water and sediment quality indices were applied to quantify impacts, emphasizing heavy metals and cyanide. The methodology integrated diverse indices to evaluate contamination levels, including the Aquatic Toxicity Index (ATI) for water quality and the Pollutant Load Index (PLI) for sediments. Results revealed increased contaminant concentrations downstream, such as lead (0.4 mg/L) and suspended solids (61 mg/L), exceeding regulatory limits. While local pressures like domestic and illegal mining discharges complicate the pollution scenario, the findings confirm significant environmental liabilities from untreated discharges, impacting ecosystem services and community health. The study demonstrates that, despite pre-existing contamination, mining activities notably degrade water and sediment quality. It highlights critical deposition zones where contaminants accumulate, serving as focal points for remediation. The developed methodology offers a replicable framework, integrating past and current data, modelling, and tailored indices to assess aquatic liabilities effectively. This research provides actionable insights for mitigating mining pollution and restoring affected ecosystems. Bridging gaps in environmental liability quantification supports informed decision-making for environmental management and policy development in mining-impacted regions.</div></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"34 ","pages":"Article 100307"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371725000319","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Untreated discharges from mining activities threaten aquatic ecosystems, affecting water quality and biodiversity. This study develops a methodology for estimating environmental liabilities in aquatic systems, focusing on Segovia, Colombia (2010–2017). Using historical data (2010–2017), recent monitoring (2021–2023), and modelling tools (HEC-RAS and WASP), water and sediment quality indices were applied to quantify impacts, emphasizing heavy metals and cyanide. The methodology integrated diverse indices to evaluate contamination levels, including the Aquatic Toxicity Index (ATI) for water quality and the Pollutant Load Index (PLI) for sediments. Results revealed increased contaminant concentrations downstream, such as lead (0.4 mg/L) and suspended solids (61 mg/L), exceeding regulatory limits. While local pressures like domestic and illegal mining discharges complicate the pollution scenario, the findings confirm significant environmental liabilities from untreated discharges, impacting ecosystem services and community health. The study demonstrates that, despite pre-existing contamination, mining activities notably degrade water and sediment quality. It highlights critical deposition zones where contaminants accumulate, serving as focal points for remediation. The developed methodology offers a replicable framework, integrating past and current data, modelling, and tailored indices to assess aquatic liabilities effectively. This research provides actionable insights for mitigating mining pollution and restoring affected ecosystems. Bridging gaps in environmental liability quantification supports informed decision-making for environmental management and policy development in mining-impacted regions.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry