Ground state for a system of nonlinear Schrödinger equations with three waves interaction and critical nonlinearities

IF 1.2 3区 数学 Q1 MATHEMATICS
Hidenori Kokufukata , Hiroshi Matsuzawa
{"title":"Ground state for a system of nonlinear Schrödinger equations with three waves interaction and critical nonlinearities","authors":"Hidenori Kokufukata ,&nbsp;Hiroshi Matsuzawa","doi":"10.1016/j.jmaa.2025.129854","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a system of nonlinear Schrödinger equations with three waves interaction and critical exponents. We discuss the existence of a nontrivial ground state solution. This problem has been studied by several researchers, for example Pomponio (2010) <span><span>[7]</span></span> and Kurata and Osada (2021) <span><span>[2]</span></span> in the case where all the exponents of the nonlinearities are subcritical. In this paper, we will demonstrate that even when some of or all of the exponents of the nonlinearities admit the Sobolev critical exponent, a nontrivial ground state solution can still be obtained if the coupling constant is sufficiently large. Additionally, we show that when the coupling constant is large enough, the ground state solution is a vector solution, namely a solution <span><math><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> that satisfies <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><mn>0</mn></math></span> for all <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>. Our method is to consider a minimization problem on the Nehari manifold.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129854"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006353","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a system of nonlinear Schrödinger equations with three waves interaction and critical exponents. We discuss the existence of a nontrivial ground state solution. This problem has been studied by several researchers, for example Pomponio (2010) [7] and Kurata and Osada (2021) [2] in the case where all the exponents of the nonlinearities are subcritical. In this paper, we will demonstrate that even when some of or all of the exponents of the nonlinearities admit the Sobolev critical exponent, a nontrivial ground state solution can still be obtained if the coupling constant is sufficiently large. Additionally, we show that when the coupling constant is large enough, the ground state solution is a vector solution, namely a solution (u1,u2,u3) that satisfies ui0 for all i=1,2,3. Our method is to consider a minimization problem on the Nehari manifold.
具有三波相互作用和临界非线性的非线性Schrödinger方程系统的基态
本文研究了一类具有三波相互作用和临界指数的非线性Schrödinger方程组。我们讨论了非平凡基态解的存在性。这个问题已经被一些研究者研究过,例如Pomponio (2010) [7], Kurata和Osada(2021)[2],在所有非线性指数都是次临界的情况下。在本文中,我们将证明即使非线性的部分或全部指数允许Sobolev临界指数,如果耦合常数足够大,仍然可以得到一个非平凡的基态解。此外,我们证明了当耦合常数足够大时,基态解是一个向量解,即对于所有i=1,2,3,满足ui≠0的解(u1,u2,u3)。我们的方法是考虑Nehari流形上的最小化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信