Maximizing solar energy harvesting efficiency: Optimal hybrid deep neural learning - based MPPT for Photovoltaic systems under complex partial shading conditions
IF 3.8 3区 计算机科学Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
{"title":"Maximizing solar energy harvesting efficiency: Optimal hybrid deep neural learning - based MPPT for Photovoltaic systems under complex partial shading conditions","authors":"SeyedJalal SeyedShenava, Peyman Zare, Iraj Faraji Davoudkhani","doi":"10.1016/j.suscom.2025.101159","DOIUrl":null,"url":null,"abstract":"<div><div>The declining viability of fossil fuels and their adverse environmental impacts are accelerating the global transition to Renewable Energy Sources (RESs), with solar energy emerging as a key pillar due to its versatility and scalability. Photovoltaic (PV) systems enable direct solar-to-electric conversion but face challenges such as nonlinear behavior and multiple Local Maximum Power Points (LMPPs) under Complex Partial Shading Conditions (CPSCs). This study introduces an enhanced Maximum Power Point Tracking (MPPT) method based on a hybrid Artificial Neural Network–Improved Incremental Conductance (ANN-IINC) model. The ANN is trained using representative datasets capturing diverse shading patterns to estimate optimal reference voltages dynamically, while the IINC module accelerates convergence with reduced oscillations. To validate the proposed method, three CPSC scenarios are simulated and compared with traditional perturb and observe and INC techniques, as well as recent metaheuristic optimization algorithms. Sensitivity and descriptive statistical analyses confirm that the ANN-IINC approach not only achieves faster convergence (81.9 ms) and higher tracking accuracy (up to 99.9096 %) but also reduces standard deviation in power output by 11.3 %–14.8 % compared to classical methods. Furthermore, confidence intervals for efficiency are narrowed by over 20 %, demonstrating improved robustness and statistical significance. The method's computational complexity is optimized, maintaining real-time applicability without sacrificing precision. A comprehensive adaptive analysis and hyperparameter sensitivity study further reinforce the superiority and practical relevance of the hybrid architecture. The study offers a scalable, stable, and efficient solution to the MPPT problem under dynamic environmental conditions. These results highlight the ANN-IINC technique’s capacity to outperform both classical and metaheuristic MPPT strategies, contributing meaningfully to the advancement of intelligent PV control under CPSCs.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"47 ","pages":"Article 101159"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000800","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The declining viability of fossil fuels and their adverse environmental impacts are accelerating the global transition to Renewable Energy Sources (RESs), with solar energy emerging as a key pillar due to its versatility and scalability. Photovoltaic (PV) systems enable direct solar-to-electric conversion but face challenges such as nonlinear behavior and multiple Local Maximum Power Points (LMPPs) under Complex Partial Shading Conditions (CPSCs). This study introduces an enhanced Maximum Power Point Tracking (MPPT) method based on a hybrid Artificial Neural Network–Improved Incremental Conductance (ANN-IINC) model. The ANN is trained using representative datasets capturing diverse shading patterns to estimate optimal reference voltages dynamically, while the IINC module accelerates convergence with reduced oscillations. To validate the proposed method, three CPSC scenarios are simulated and compared with traditional perturb and observe and INC techniques, as well as recent metaheuristic optimization algorithms. Sensitivity and descriptive statistical analyses confirm that the ANN-IINC approach not only achieves faster convergence (81.9 ms) and higher tracking accuracy (up to 99.9096 %) but also reduces standard deviation in power output by 11.3 %–14.8 % compared to classical methods. Furthermore, confidence intervals for efficiency are narrowed by over 20 %, demonstrating improved robustness and statistical significance. The method's computational complexity is optimized, maintaining real-time applicability without sacrificing precision. A comprehensive adaptive analysis and hyperparameter sensitivity study further reinforce the superiority and practical relevance of the hybrid architecture. The study offers a scalable, stable, and efficient solution to the MPPT problem under dynamic environmental conditions. These results highlight the ANN-IINC technique’s capacity to outperform both classical and metaheuristic MPPT strategies, contributing meaningfully to the advancement of intelligent PV control under CPSCs.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.