Feasibility of the hydrogen production by assistance of ethanol: A critical perspective

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Seiti Inoue Venturini, Manuel J.S. Farias, Germano Tremiliosi-Filho
{"title":"Feasibility of the hydrogen production by assistance of ethanol: A critical perspective","authors":"Seiti Inoue Venturini,&nbsp;Manuel J.S. Farias,&nbsp;Germano Tremiliosi-Filho","doi":"10.1016/j.coelec.2025.101723","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional electrolytic water splitting is one of the usual ways to produce molecular hydrogen. However, the specific slow kinetics of the complementary anodic molecular oxygen generation harm the efficiency of hydrogen evolution. One of the ways to get around this problem is to replace the slow oxygen reaction by another anodic reaction, with higher faradaic efficiency, such as those involving biomass derivatives, especially the ethanol, setting up the electrochemical ethanol reformer. Thus, in this work is made a critical review of recent researchers regarding the development of catalytic materials for both, hydrogen reaction and ethanol oxidation.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"52 ","pages":"Article 101723"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000821","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional electrolytic water splitting is one of the usual ways to produce molecular hydrogen. However, the specific slow kinetics of the complementary anodic molecular oxygen generation harm the efficiency of hydrogen evolution. One of the ways to get around this problem is to replace the slow oxygen reaction by another anodic reaction, with higher faradaic efficiency, such as those involving biomass derivatives, especially the ethanol, setting up the electrochemical ethanol reformer. Thus, in this work is made a critical review of recent researchers regarding the development of catalytic materials for both, hydrogen reaction and ethanol oxidation.
乙醇辅助制氢的可行性:一个批判的观点
传统的电解水裂解是生产氢分子的常用方法之一。然而,互补阳极分子产氧特有的慢动力学损害了析氢效率。解决这一问题的方法之一是用另一种法拉第效率更高的阳极反应代替缓慢的氧反应,例如涉及生物质衍生物的反应,特别是乙醇,建立电化学乙醇重整器。因此,在这项工作中,对最近研究人员关于氢反应和乙醇氧化催化材料的发展进行了批判性的回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信