Impact of fluid dynamic characteristics near the surface of the anode electrode on the performance of recirculation-type microbial fuel cells using computational fluid dynamics

Q1 Environmental Science
Dale Mark N. Bristol , Jian-Ting Pung , Chin-Tsan Wang
{"title":"Impact of fluid dynamic characteristics near the surface of the anode electrode on the performance of recirculation-type microbial fuel cells using computational fluid dynamics","authors":"Dale Mark N. Bristol ,&nbsp;Jian-Ting Pung ,&nbsp;Chin-Tsan Wang","doi":"10.1016/j.biteb.2025.102213","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines how fluid dynamic properties near the anode electrode surface (carbon cloth and carbon paper) affect the operation of recirculation-type microbial fuel cells (MFCs) at different flow rates (140, 240, and 340 mL/min) using computational fluid dynamics (CFD). The contribution of this research clarifies how changes in velocity, pressure, and shear stress influence substrate distribution and biofilm formation in the anode by modeling intricate flow patterns and mass transport phenomena at the fluid-anode microscale interface. Aside from the use of CFD simulation, the experiment was carried out by means of particle image velocimetry application accessed in the MATLAB software for the actual flow field visualization and electrochemical measurements for the voltage, current density, power density and impedance. From the statistical analysis using ANOVA, results showed that there is a significant difference in the mean power densities from flowrate + anode electrode combinations (140CC, 140 CP, 240 CC, 240 CP, 340 CC and 340 CP) and this was further confirmed using the Tukey's pairwise comparison post hoc analysis showing 140CP indeed has the highest power density at 297.60 mW/m<sup>2</sup> with a corresponding predicted boundary layer thickness from CFD at 15.7 mm.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"31 ","pages":"Article 102213"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25001951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines how fluid dynamic properties near the anode electrode surface (carbon cloth and carbon paper) affect the operation of recirculation-type microbial fuel cells (MFCs) at different flow rates (140, 240, and 340 mL/min) using computational fluid dynamics (CFD). The contribution of this research clarifies how changes in velocity, pressure, and shear stress influence substrate distribution and biofilm formation in the anode by modeling intricate flow patterns and mass transport phenomena at the fluid-anode microscale interface. Aside from the use of CFD simulation, the experiment was carried out by means of particle image velocimetry application accessed in the MATLAB software for the actual flow field visualization and electrochemical measurements for the voltage, current density, power density and impedance. From the statistical analysis using ANOVA, results showed that there is a significant difference in the mean power densities from flowrate + anode electrode combinations (140CC, 140 CP, 240 CC, 240 CP, 340 CC and 340 CP) and this was further confirmed using the Tukey's pairwise comparison post hoc analysis showing 140CP indeed has the highest power density at 297.60 mW/m2 with a corresponding predicted boundary layer thickness from CFD at 15.7 mm.

Abstract Image

利用计算流体动力学研究阳极电极表面流体动力学特性对循环式微生物燃料电池性能的影响
本研究利用计算流体动力学(CFD)研究了阳极电极表面(碳布和碳纸)附近的流体动力学特性在不同流速(140、240和340 mL/min)下对循环型微生物燃料电池(mfc)运行的影响。本研究通过模拟流体-阳极微观界面上复杂的流动模式和质量传递现象,阐明了速度、压力和剪切应力的变化如何影响阳极中衬底分布和生物膜的形成。实验除采用CFD模拟外,还利用MATLAB软件中访问的颗粒图像测速应用程序进行实际流场可视化,并对电压、电流密度、功率密度和阻抗进行电化学测量。利用方差分析的统计分析结果显示,流量+阳极电极组合(140CC、140CP、240 CC、240 CP、340 CC和340 CP)的平均功率密度存在显著差异,这一点通过Tukey’s两两比较事后分析进一步证实,140CP确实具有最高的功率密度,为297.60 mW/m2,相应的CFD预测边界层厚度为15.7 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信