A coupled Eulerian–Lagrangian approach with explicit volume diffusion subgrid closures for jet breakup and atomisation

IF 5 Q2 ENERGY & FUELS
Jiayue Yu , Sebastian Galindo-Lopez , Matthew J. Cleary
{"title":"A coupled Eulerian–Lagrangian approach with explicit volume diffusion subgrid closures for jet breakup and atomisation","authors":"Jiayue Yu ,&nbsp;Sebastian Galindo-Lopez ,&nbsp;Matthew J. Cleary","doi":"10.1016/j.jaecs.2025.100350","DOIUrl":null,"url":null,"abstract":"<div><div>A novel, coupled Eulerian–Lagrangian Large Eddy Simulation method is developed to model turbulent jet breakup, atomisation and droplet dispersion applicable to combusting sprays and other two-phase flows. The approach integrates an Eulerian single-fluid representation incorporating Explicit Volume Diffusion (EVD) subgrid closures for the continuous fluids, including the liquid core and interfacial region, which transitions to a two-fluid representation involving Lagrangian Particle Tracking (LPT) of inertial droplets. The Eulerian–Lagrangian transition utilises criteria based on liquid volume fraction thresholds and a critical droplet Weber number. The coupled model (EVD-LPT) is validated against new high-resolution Direct Numerical Simulation (DNS) data of a turbulent round liquid jet and existing experimental and numerical data for a turbulent jet in crossflow. Results demonstrate substantial improvements in droplet size prediction relative to Eulerian-only EVD simulations. In the round jet case, mesh convergence is achieved for droplets larger than <span><math><mrow><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, with low sensitivity to transition parameters. The crossflow simulations also agree closely with DNS and previous Large Eddy Simulation (LES) results, particularly in capturing inertial droplet behaviour. The study reveals that the Lagrangian representation significantly enhances the prediction of droplet size distributions, addressing known limitations of Eulerian-only models in regions dominated by aerodynamic inertial effects. Overall, the coupled EVD-LPT method provides a computationally efficient, accurate approach for atomisation predictions in complex spray systems, laying a foundation for future developments incorporating droplet secondary breakup, non-spherical droplet shapes, and droplet interaction models.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"23 ","pages":"Article 100350"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X25000329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel, coupled Eulerian–Lagrangian Large Eddy Simulation method is developed to model turbulent jet breakup, atomisation and droplet dispersion applicable to combusting sprays and other two-phase flows. The approach integrates an Eulerian single-fluid representation incorporating Explicit Volume Diffusion (EVD) subgrid closures for the continuous fluids, including the liquid core and interfacial region, which transitions to a two-fluid representation involving Lagrangian Particle Tracking (LPT) of inertial droplets. The Eulerian–Lagrangian transition utilises criteria based on liquid volume fraction thresholds and a critical droplet Weber number. The coupled model (EVD-LPT) is validated against new high-resolution Direct Numerical Simulation (DNS) data of a turbulent round liquid jet and existing experimental and numerical data for a turbulent jet in crossflow. Results demonstrate substantial improvements in droplet size prediction relative to Eulerian-only EVD simulations. In the round jet case, mesh convergence is achieved for droplets larger than 5μm, with low sensitivity to transition parameters. The crossflow simulations also agree closely with DNS and previous Large Eddy Simulation (LES) results, particularly in capturing inertial droplet behaviour. The study reveals that the Lagrangian representation significantly enhances the prediction of droplet size distributions, addressing known limitations of Eulerian-only models in regions dominated by aerodynamic inertial effects. Overall, the coupled EVD-LPT method provides a computationally efficient, accurate approach for atomisation predictions in complex spray systems, laying a foundation for future developments incorporating droplet secondary breakup, non-spherical droplet shapes, and droplet interaction models.
射流破裂和雾化的欧拉-拉格朗日耦合方法及显式体积扩散子网格闭包
提出了一种新的欧拉-拉格朗日耦合大涡模拟方法,用于模拟燃烧喷雾和其他两相流的湍流射流破裂、雾化和液滴分散。该方法集成了欧拉单流体表示,其中包含针对连续流体(包括液核和界面区域)的明确体积扩散(EVD)子网格闭包,并将其转换为涉及惯性液滴的拉格朗日粒子跟踪(LPT)的双流体表示。欧拉-拉格朗日转换利用基于液体体积分数阈值和临界液滴韦伯数的准则。利用新的高分辨率圆形湍流射流直接数值模拟(DNS)数据和已有的横流湍流射流实验和数值数据对耦合模型(EVD-LPT)进行了验证。结果表明,相对于仅用欧拉法进行的EVD模拟,液滴大小预测有了实质性的改进。在圆形射流情况下,粒径大于5μm的液滴可以实现网格收敛,且对过渡参数的敏感性较低。横流模拟也与DNS和以前的大涡模拟(LES)结果非常吻合,特别是在捕捉惯性液滴行为方面。研究表明,拉格朗日表示显著增强了液滴尺寸分布的预测,解决了已知的欧拉模型在气动惯性效应主导区域的局限性。总体而言,耦合EVD-LPT方法为复杂喷雾系统的雾化预测提供了一种计算高效、准确的方法,为液滴二次破碎、非球形液滴形状和液滴相互作用模型的未来发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信