Cryorolling-induced uniform dislocation distribution and solute regulation enhance strength-plasticity of crossover Al-5.3Mg-4.6Zn-0.5Cu Alloy

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhen Zhang , Gaolei Xu , Di Zhang , Liang Zhu , Hongbin Wang , Jishan Zhang
{"title":"Cryorolling-induced uniform dislocation distribution and solute regulation enhance strength-plasticity of crossover Al-5.3Mg-4.6Zn-0.5Cu Alloy","authors":"Zhen Zhang ,&nbsp;Gaolei Xu ,&nbsp;Di Zhang ,&nbsp;Liang Zhu ,&nbsp;Hongbin Wang ,&nbsp;Jishan Zhang","doi":"10.1016/j.msea.2025.148769","DOIUrl":null,"url":null,"abstract":"<div><div>The longstanding dilemma in developing next-generation ultra-high-strength aluminum alloys lies in achieving an optimal strength-plasticity synergy. This investigation presents a breakthrough using an Al-5.3Mg-4.6Zn-0.5Cu alloy subjected to cryorolling-augmented thermomechanical processing. The cryogenic deformation mechanism induces two critical microstructural modifications: (1) Uniform dislocation networks effectively weaken the &lt;111&gt;∥RD rolling texture intensity, stabilizing work hardening rates during late-stage plastic deformation and thereby enhancing ductility; (2) Enhanced diffusion kinetics facilitate homogeneous precipitate distribution with increased volume fraction during subsequent aging, while optimized solute partitioning directs matrix precipitation evolution from cluster-dominated structures to T''→T′ phase transformations, significantly boosting precipitation strengthening. Through optimized solution treatment followed by 50 % cryorolling and peak aging, we successfully achieved a sheet alloy exhibiting exceptional mechanical properties: 720 MPa ultimate tensile strength with maintained elongation exceeding 10 %.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"943 ","pages":"Article 148769"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325009931","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The longstanding dilemma in developing next-generation ultra-high-strength aluminum alloys lies in achieving an optimal strength-plasticity synergy. This investigation presents a breakthrough using an Al-5.3Mg-4.6Zn-0.5Cu alloy subjected to cryorolling-augmented thermomechanical processing. The cryogenic deformation mechanism induces two critical microstructural modifications: (1) Uniform dislocation networks effectively weaken the <111>∥RD rolling texture intensity, stabilizing work hardening rates during late-stage plastic deformation and thereby enhancing ductility; (2) Enhanced diffusion kinetics facilitate homogeneous precipitate distribution with increased volume fraction during subsequent aging, while optimized solute partitioning directs matrix precipitation evolution from cluster-dominated structures to T''→T′ phase transformations, significantly boosting precipitation strengthening. Through optimized solution treatment followed by 50 % cryorolling and peak aging, we successfully achieved a sheet alloy exhibiting exceptional mechanical properties: 720 MPa ultimate tensile strength with maintained elongation exceeding 10 %.
冷滚诱导的均匀位错分布和溶质调节提高了交叉Al-5.3Mg-4.6Zn-0.5Cu合金的强度塑性
开发新一代超高强度铝合金的长期难题在于实现最佳的强度-塑性协同效应。本研究提出了Al-5.3Mg-4.6Zn-0.5Cu合金进行冷滚强化热机械加工的突破。低温变形机制诱发了两个关键的微观组织变化:(1)均匀位错网络有效削弱了<;111>;∥RD轧制织构强度,稳定了塑性变形后期的加工硬化速率,从而提高了塑性;(2)在后续时效过程中,随着体积分数的增加,扩散动力学的增强有利于析出相的均匀分布,而优化的溶质分配使基体析出由团簇为主的结构向T”→T’相转变,显著促进了析出强化。通过优化固溶处理,然后进行50%的冷滚和峰值时效,我们成功地获得了具有优异机械性能的板材合金:720 MPa的极限抗拉强度和超过10%的延伸率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信