Enhancement of Mechanical Properties of high-Mn TWIP Steel with Fast Heating process: Insights into Microstructural Evolution and Performance Optimization

Atef Hamada , Ali Khosravifard , Matias Jaskari , Antti Järvenpää , Mahmoud Khedr
{"title":"Enhancement of Mechanical Properties of high-Mn TWIP Steel with Fast Heating process: Insights into Microstructural Evolution and Performance Optimization","authors":"Atef Hamada ,&nbsp;Ali Khosravifard ,&nbsp;Matias Jaskari ,&nbsp;Antti Järvenpää ,&nbsp;Mahmoud Khedr","doi":"10.1016/j.prostr.2025.06.100","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the impact of fast heating (FH) technique on the microstructural evolution of heavily cold-rolled TWIP steel, focusing on the temperature range of 1000-1200°C for a duration of 5 seconds. Utilizing a Gleeble 3600 simulator, FH experiments were characterized by rapid heating rates of 500°C/s and cooling rates of 400°C/s. The promoted microstructures were analyzed using Electron Backscatter Diffraction (EBSD), while mechanical properties were evaluated through microhardness measurements and uniaxial tensile tests. The results revealed that the FH process promotes a fully recrystallized microstructure. At 1000°C, this FH cycle yields an ultrafine-grained structure with an average grain size of approximately 2.5 µm, which synergistically enhances both tensile strength (750 MPa) and extreme ductility (105%). However, the FH cycle at 1200°C results in a coarser-grained structure with an average grain size of about 20 µm. This microstructure, while reducing tensile strength to 650 MPa, significantly increases ductility to 120%. These findings illustrate a valuable synergy between FH parameters and microstructural development, offering a strategic approach to optimizing the mechanical performance of TWIP steels.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"68 ","pages":"Pages 581-587"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321625001015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the impact of fast heating (FH) technique on the microstructural evolution of heavily cold-rolled TWIP steel, focusing on the temperature range of 1000-1200°C for a duration of 5 seconds. Utilizing a Gleeble 3600 simulator, FH experiments were characterized by rapid heating rates of 500°C/s and cooling rates of 400°C/s. The promoted microstructures were analyzed using Electron Backscatter Diffraction (EBSD), while mechanical properties were evaluated through microhardness measurements and uniaxial tensile tests. The results revealed that the FH process promotes a fully recrystallized microstructure. At 1000°C, this FH cycle yields an ultrafine-grained structure with an average grain size of approximately 2.5 µm, which synergistically enhances both tensile strength (750 MPa) and extreme ductility (105%). However, the FH cycle at 1200°C results in a coarser-grained structure with an average grain size of about 20 µm. This microstructure, while reducing tensile strength to 650 MPa, significantly increases ductility to 120%. These findings illustrate a valuable synergy between FH parameters and microstructural development, offering a strategic approach to optimizing the mechanical performance of TWIP steels.
快速加热提高高mn TWIP钢的力学性能:组织演变与性能优化研究
本研究探讨了快速加热(FH)技术对重冷轧TWIP钢微观组织演变的影响,重点关注温度范围为1000-1200°C,持续时间为5秒。利用Gleeble 3600模拟器,FH实验的特点是快速加热速度为500°C/s,冷却速度为400°C/s。利用电子背散射衍射(EBSD)分析了促进的微观组织,并通过显微硬度测量和单轴拉伸测试评估了力学性能。结果表明,FH工艺促进了组织的完全再结晶。在1000°C时,FH循环产生平均晶粒尺寸约为2.5 μ m的超细晶组织,协同提高抗拉强度(750 MPa)和极限延展性(105%)。然而,在1200°C下的FH循环导致晶粒较粗,平均晶粒尺寸约为20µm。该组织在将抗拉强度降低至650 MPa的同时,将延展性显著提高至120%。这些发现说明了FH参数和微观组织发展之间有价值的协同作用,为优化TWIP钢的力学性能提供了一种战略方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信