Experimental investigation of Notched Identification based on Maximum Resistance Force in Steel Specimens using an Artificial Neural Network

A. Oulad Brahim , R. Capozucca , E. Magagnini , S. Khatir , Y. Bouzid
{"title":"Experimental investigation of Notched Identification based on Maximum Resistance Force in Steel Specimens using an Artificial Neural Network","authors":"A. Oulad Brahim ,&nbsp;R. Capozucca ,&nbsp;E. Magagnini ,&nbsp;S. Khatir ,&nbsp;Y. Bouzid","doi":"10.1016/j.prostr.2025.06.098","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a robust methodology is presented to identify the notch depth value in X70 steel specimens based on the maximum resistance force using an artificial neural network (ANN). The mechanical characterizations of fracture behavior of the X70 steel specimens are simulated using XFEM. The main goal is to obtain the best identification of notch depths as a function of various maximum resistances. The collected data are used as inputs and outputs for the proposed ANN using optimal parameters to identify the notch depths in different steel specimen designs based on different maximum resistance force values. The provided results showed the effectiveness of the ANN based on the convergence study of the obtained results and the accuracy of notch depth identification.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"68 ","pages":"Pages 566-572"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245232162500099X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a robust methodology is presented to identify the notch depth value in X70 steel specimens based on the maximum resistance force using an artificial neural network (ANN). The mechanical characterizations of fracture behavior of the X70 steel specimens are simulated using XFEM. The main goal is to obtain the best identification of notch depths as a function of various maximum resistances. The collected data are used as inputs and outputs for the proposed ANN using optimal parameters to identify the notch depths in different steel specimen designs based on different maximum resistance force values. The provided results showed the effectiveness of the ANN based on the convergence study of the obtained results and the accuracy of notch depth identification.
基于最大阻力的钢试件缺口识别的人工神经网络实验研究
本文提出了一种基于最大阻力的人工神经网络识别X70钢试件缺口深度值的鲁棒方法。采用XFEM模拟了X70钢试样断裂行为的力学特征。主要目标是获得缺口深度作为各种最大阻力函数的最佳识别。将收集到的数据作为人工神经网络的输入和输出,利用最优参数识别基于不同最大阻力值的不同钢试件设计中的缺口深度。通过对所得结果的收敛性研究和缺口深度识别的准确性,验证了人工神经网络的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信