Abstract 3D-rotation groups and recognition of icosahedral modules

IF 0.8 2区 数学 Q2 MATHEMATICS
Lauren McEnerney, Joshua Wiscons
{"title":"Abstract 3D-rotation groups and recognition of icosahedral modules","authors":"Lauren McEnerney,&nbsp;Joshua Wiscons","doi":"10.1016/j.jalgebra.2025.05.045","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce an abstract notion of a 3D-rotation module for a group <em>G</em> that does not require the module to carry a vector space structure, a priori nor a posteriori. We prove that, under an expected irreducibility-like assumption, the only finite <em>G</em> with such a module are those already known from the classical setting: <span><math><mi>Alt</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span>, <span><math><mi>Sym</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span>, and <span><math><mi>Alt</mi><mo>(</mo><mn>5</mn><mo>)</mo></math></span>. Our main result then studies the module structure when <span><math><mi>G</mi><mo>=</mo><mi>Alt</mi><mo>(</mo><mn>5</mn><mo>)</mo></math></span> and shows that, under certain natural restrictions, it is fully determined and generalizes that of the classical icosahedral module.</div><div>We include an application to the recently introduced setting of modules with an additive dimension, a general setting allowing for simultaneous treatment of classical representation theory of finite groups as well as representations within various well-behaved model-theoretic settings such as the <em>o</em>-minimal and finite Morley rank ones. Leveraging our recognition result for icosahedral modules, we classify the faithful <span><math><mi>Alt</mi><mo>(</mo><mn>5</mn><mo>)</mo></math></span>-modules with additive dimension that are dim-connected of dimension 3 and without 2-torsion.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 389-408"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003631","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an abstract notion of a 3D-rotation module for a group G that does not require the module to carry a vector space structure, a priori nor a posteriori. We prove that, under an expected irreducibility-like assumption, the only finite G with such a module are those already known from the classical setting: Alt(4), Sym(4), and Alt(5). Our main result then studies the module structure when G=Alt(5) and shows that, under certain natural restrictions, it is fully determined and generalizes that of the classical icosahedral module.
We include an application to the recently introduced setting of modules with an additive dimension, a general setting allowing for simultaneous treatment of classical representation theory of finite groups as well as representations within various well-behaved model-theoretic settings such as the o-minimal and finite Morley rank ones. Leveraging our recognition result for icosahedral modules, we classify the faithful Alt(5)-modules with additive dimension that are dim-connected of dimension 3 and without 2-torsion.
摘要二十面体模的三维旋转基团与识别
我们引入了群G的三维旋转模块的抽象概念,该模块不需要先验或后验地携带向量空间结构。我们证明了在类不可约性的期望假设下,具有这样一个模的有限G是经典集合中已知的:Alt(4), Sym(4),和Alt(5)。我们的主要结果研究了G=Alt(5)时的模结构,表明在一定的自然限制条件下,模结构是完全确定的,并推广了经典二十面体模的结构。我们包括一个应用到最近引入的具有加维的模块设置,一个允许同时处理有限群的经典表示理论的一般设置,以及在各种表现良好的模型理论设置中的表示,如0最小和有限Morley秩设置。利用我们对二十面体模的识别结果,我们分类了具有3维暗连通且没有2-扭转的具有附加维的忠实的Alt(5)-模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信