Abdulkadir Gulsen , Burak Kolukisa , Mustafa Etcil , Umut Caliskan , Hafız Muhammad Numan Zafar , Munise Didem Demirbas , Ahmet Turan Ozdemir , Burcu Bakir-Gungor
{"title":"Investigating strain rate effects on damage mechanisms in hybrid laminated composites using acoustic emission","authors":"Abdulkadir Gulsen , Burak Kolukisa , Mustafa Etcil , Umut Caliskan , Hafız Muhammad Numan Zafar , Munise Didem Demirbas , Ahmet Turan Ozdemir , Burcu Bakir-Gungor","doi":"10.1016/j.apacoust.2025.110931","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid composites, which combine distinct fiber types such as carbon, basalt, and aramid, provide a synergistic balance of strength, stiffness, impact resistance, and energy dissipation, making them appealing for critical applications in aerospace, automotive, and other high-performance industries. Monitoring damage progression in these composites is vital for ensuring structural integrity and preventing catastrophic failures. Acoustic emission (AE) serves as a powerful, noninvasive technique for real-time structural health monitoring, capturing the transient stress waves generated when damage events occur. This study utilizes AE to examine the influence of strain rate on damage modes in carbon/basalt/aramid hybrid composites under three-point bending. An unsupervised feature selection based on Laplacian scores is employed to identify the most relevant AE features with damage modes, while SHapley Additive Explanations (SHAP) are used to evaluate the correlation between AE features and strain rates. The correlation analysis results indicate that peak frequency (PF) serves as a key indicator, demonstrating significant shifts at higher strain rates. Gaussian Mixture Model (GMM) clustering is used to analyze hybrid composites by examining clustered AE signals based on selected features identified through Laplacian scores, with Silhouette scores employed to determine the optimal number of clusters. This study highlights the role of AE in understanding fiber interactions and damage evolution, offering valuable insights into the mechanical performance and optimization of carbon/basalt/aramid hybrid composite structures.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"240 ","pages":"Article 110931"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25004037","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid composites, which combine distinct fiber types such as carbon, basalt, and aramid, provide a synergistic balance of strength, stiffness, impact resistance, and energy dissipation, making them appealing for critical applications in aerospace, automotive, and other high-performance industries. Monitoring damage progression in these composites is vital for ensuring structural integrity and preventing catastrophic failures. Acoustic emission (AE) serves as a powerful, noninvasive technique for real-time structural health monitoring, capturing the transient stress waves generated when damage events occur. This study utilizes AE to examine the influence of strain rate on damage modes in carbon/basalt/aramid hybrid composites under three-point bending. An unsupervised feature selection based on Laplacian scores is employed to identify the most relevant AE features with damage modes, while SHapley Additive Explanations (SHAP) are used to evaluate the correlation between AE features and strain rates. The correlation analysis results indicate that peak frequency (PF) serves as a key indicator, demonstrating significant shifts at higher strain rates. Gaussian Mixture Model (GMM) clustering is used to analyze hybrid composites by examining clustered AE signals based on selected features identified through Laplacian scores, with Silhouette scores employed to determine the optimal number of clusters. This study highlights the role of AE in understanding fiber interactions and damage evolution, offering valuable insights into the mechanical performance and optimization of carbon/basalt/aramid hybrid composite structures.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.