On the generalized Dirichlet beta and Riemann zeta functions and Ramanujan-type formulae for beta and zeta values

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
S. Yakubovich
{"title":"On the generalized Dirichlet beta and Riemann zeta functions and Ramanujan-type formulae for beta and zeta values","authors":"S. Yakubovich","doi":"10.1016/j.aam.2025.102934","DOIUrl":null,"url":null,"abstract":"<div><div>We define the generalized Dirichlet beta and Riemann zeta functions in terms of the integrals, involving powers of the hyperbolic secant and cosecant functions. The corresponding functional equations are established. Some consequences of the Ramanujan identity for zeta values at odd integers are investigated and new formulae of the Ramanujan type are obtained. These results are achieved, in particular, involving the Kontorovich-Lebedev transform and the corresponding polynomials introduced by the author.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"170 ","pages":"Article 102934"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582500096X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We define the generalized Dirichlet beta and Riemann zeta functions in terms of the integrals, involving powers of the hyperbolic secant and cosecant functions. The corresponding functional equations are established. Some consequences of the Ramanujan identity for zeta values at odd integers are investigated and new formulae of the Ramanujan type are obtained. These results are achieved, in particular, involving the Kontorovich-Lebedev transform and the corresponding polynomials introduced by the author.
关于广义Dirichlet和Riemann zeta函数和值的ramanujan型公式
我们用包含双曲正割函数和余割函数幂的积分来定义广义狄利克雷函数和黎曼函数。建立了相应的函数方程。研究了奇整数处zeta值的Ramanujan恒等式的一些结果,得到了Ramanujan型的新公式。这些结果的实现,特别是涉及到Kontorovich-Lebedev变换和相应的多项式由作者介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信