Chao Xue , Raisa E.D. Rudge , Emma Hassall , Ekaterina Strounina , Louwrens C. Hoffman , Jason R. Stokes , Heather E. Smyth
{"title":"The path to juiciness: The role of structural pores and their impact on sensory and textural properties of plant-based meat burgers","authors":"Chao Xue , Raisa E.D. Rudge , Emma Hassall , Ekaterina Strounina , Louwrens C. Hoffman , Jason R. Stokes , Heather E. Smyth","doi":"10.1016/j.foostr.2025.100446","DOIUrl":null,"url":null,"abstract":"<div><div>Fat plays a crucial role in determining the sensory quality of plant-based meats. This study investigated how different methods of fat incorporation (no fat, liquid oil, and solid fat particles), with varying solid fat volumes (10 ∼ 130 mm³), contribute to the sensory properties of plant-based and animal-based meat burgers. A comprehensive approach encompassing sensory evaluation, textural measurements, and microstructural analysis was employed. The results revealed a significant sensory gap between animal-based meats (ABM) and plant-based meat analogues (PBMA) samples: ABM samples exhibited a more uniform fat distribution and were closely associated with higher sensory score attributes for <em>initial juiciness</em>, <em>density</em>, <em>cohesiveness firmness</em> compared to their PBMA counterparts. Trained panellists could also classify PBMA and ABM samples into three sensory clusters based on their methods of oil incorporation. The sensory results showed that <em>initial juiciness</em> and <em>oiliness</em> scores decreased as solid fat particle volume increased. Cooking loss and micro-computed tomography results indicate that PBMA samples formed more air pores, which acted as pathways for oil to escape during cooking, leading to a lesser uniform distribution of oil. However, the robust structure of ABM retained fat to form more finely distributed “fat pools” despite changes in solid fat particle sizes. This research offers insights for manufacturers to control PBMA for desirable sensory outcomes.</div></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"45 ","pages":"Article 100446"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329125000413","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fat plays a crucial role in determining the sensory quality of plant-based meats. This study investigated how different methods of fat incorporation (no fat, liquid oil, and solid fat particles), with varying solid fat volumes (10 ∼ 130 mm³), contribute to the sensory properties of plant-based and animal-based meat burgers. A comprehensive approach encompassing sensory evaluation, textural measurements, and microstructural analysis was employed. The results revealed a significant sensory gap between animal-based meats (ABM) and plant-based meat analogues (PBMA) samples: ABM samples exhibited a more uniform fat distribution and were closely associated with higher sensory score attributes for initial juiciness, density, cohesiveness firmness compared to their PBMA counterparts. Trained panellists could also classify PBMA and ABM samples into three sensory clusters based on their methods of oil incorporation. The sensory results showed that initial juiciness and oiliness scores decreased as solid fat particle volume increased. Cooking loss and micro-computed tomography results indicate that PBMA samples formed more air pores, which acted as pathways for oil to escape during cooking, leading to a lesser uniform distribution of oil. However, the robust structure of ABM retained fat to form more finely distributed “fat pools” despite changes in solid fat particle sizes. This research offers insights for manufacturers to control PBMA for desirable sensory outcomes.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.